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Abstract. In this paper, we investigate an extension of the description logic
SHIQ––a knowledge representation formalism used for the Semantic Web––with
transitive closure of roles occurring not only in concept inclusion axioms but also
in role inclusion axioms. We start by proving that adding transitive closure of
roles to SHIQ without restriction on role hierarchies may lead to undecidabil-
ity. An analysis of this proof allows us to identify kinds of axioms which are
responsible for the undecidability and to design a decidable extension of SHIQ
with transitive closure of roles. Next, we propose a tableaux-based algorithm that
decides satisfiability of the new logic. It was shown by experiments that this kind
of algorithms is suitable for implementation.

1 Introduction

The ontology language OWL-DL [1] is widely used to formalize semantic resources on
the Semantic Web. This language is mainly based on the description logic SHOIN
which is known to be decidable [2]. Although SHOIN is expressive and provides
transitive roles to model transitivity of relations, we can find several applications in
which the transitive closure of roles, that is more expressive than transitive roles, is
necessary. An example given by [3] describes two categories of devices as follows: (1)
Devices have as their direct part a battery: Deviceu∃hasPart.Battery, (2) Devices have
at some level of decomposition a battery: Deviceu∃hasPart+.Battery. However, if we
now define hasPart as a transitive role, the concept Deviceu∃hasPart.Battery does not
represent the devices as described above since it does not allow one to describe these
categories of devices as two different sets of devices.

In addition, the difference between transitive roles and the transitive closure of roles
is clearer when they are involved in role inclusion axioms. It is obvious that concept
∃R+.(C u ∀R−.⊥) is unsatisfiable w.r.t an empty TBox and the trivial axiom R v R+.
If we now substitute R+ for a transitive role Rt such that R v Rt (i.e. we substitute each
occurrence of R+ in axioms and concepts for Rt) then the concept ∃Rt.(Cu∀R−.⊥) be-
comes satisfiable. The point is that an instance of R+ represents a sequence of instances
of R but an instance of Rt corresponds to a sequence of instances of itself.



In several applications, we need to model successive events and relationships be-
tween them. An event is something oriented in time i.e. we can talk about endpoints of
an event, or a chronological order of events. When an event of some kind occurs it can
trigger an event (or a sequence of events) of another kind. In this situation, it may be
suitable for using a role to model an event. If we denote roles event and event′ for two
kinds of events then the axiom (event v event′) expresses the fact that when an event
of the first kind occurs it implies one event or a sequence of events of the second kind.
To express “a sequence of events” we can define event′ to be transitive. However, the
semantics of transitive roles is not sufficient to describe this behaviour since the tran-
sitive role event′ can represent a sequence of itself but not a sequence of another role.
Such behaviours can be found in the following example.
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Fig. 1. Mouse clicks and keystrokes

Example 1. Let S be the set of all states of applications running on a computer. We
denote by A,B,C ⊆ S the sets of states of applications A,B,C, respectively. A user
can perform a mouse-click or keystroke to change states. The user can type a shortcut
(combination of keys) to go from A to B or from B to C. This action corresponds to a
sequence of mouse-clicks or keystrokes. The system’s behaviour is depicted in Figure
1.

In such a system, users may be interested in the following question: “from the ap-
plication A, can one go through the application B to get directly the application C by a
mouse-click or keystroke ?”.

We now use a description logic with transitive closure of roles to express the con-
straints as described above. To to this, we use a role next to model mouse clicks or
keystrokes and a role jump to model shortcuts in the following axioms:

(i) start v ¬A u ¬B u ¬C; X u Y v ⊥ with X,Y ∈ {A,B,C} and X 6= Y;



(ii) A v ∃jump.B; A v ∃jump.C; B v ∃jump.C;
(iii) start v ∀next−.⊥; jump v next+;

Under some operating systems, users cannot switch directly from an application to a
particular one just by one mouse click or keystroke. We can express this constraint by
an axiom as follows:

(iv) C u ∃next−.B v ⊥;
In this case, the concept (A u ∃next+.(C u ∃next−.B)) capturing the question above is
unsatisfiable w.r.t. the axioms presented.

Such examples motivate the study of Description Logics (DL) that allow the transi-
tive closure of roles to occur in both concept and role inclusion axioms. We introduce
in this work a DL that can model systems as described in Example 1 and propose a
tableaux-based decision procedure for concept satisfiability problem in this DL.

To the best of our knowledge, the decidability of SHIQ+, which is obtained from
SHIQ by adding transitive closure of roles, is unknown. [4] and [5] have established
decision procedures for concept satisfiability in SHI+ and SHIO+ by using neigh-
borhoods representing an individual with its neighbors in a model, to build completion
graphs. In the literature, many decidability results in DLs can be obtained from their
counterparts in modal logics ([6], [7]). However, these counterparts do not take into
account expressive role inclusion axioms. In particular, [7] has shown decidability of
a very expressive DL, so-called CAT S, including SHIQ with the transitive closure
of roles but not allowing it to occur in role inclusion axioms. [7] has pointed out that
the complexity of concept subsumption in CAT S is EXPTIME-complete by translating
CAT S into the logic Converse PDL in which inference problems are well studied.

Recently, there have been some works in [8] and [9] which have attempted to aug-
ment the expressiveness of role inclusion axioms. A decidable logic, namely SROIQ,
resulting from these efforts allows for new role constructors such as composition, dis-
jointness and negation. In addition, [10] has introduced a DL, so-called ALCQIb+reg ,
which can capture SRIQ (SROIQ without nominal), and obtained the worst-case
complexity (EXPTIME-complete) of the satisfiability problem by using automata-based
technique. ALCQIb+reg allows for a rich set of operators on roles by which one can
simulate role inclusion axioms. However, transitive closures in role inclusion axioms
are expressible neither in SROIQ nor in ALCQIb+reg.

In addition, tableaux-based algorithms for expressive DLs like SHIQ [11] and
SHOIQ [12] result in efficient implementations. This kind of algorithms relies on two
structures, the so-called tableau and completion graph. Roughly speaking, a tableau for
a concept represents a model for the concept and it is possibly infinite. A tableau trans-
lates satisfiability of all given concept and role inclusion axioms into the satisfiability
of semantic constraints imposed locally on each individual of the tableau. This feature
of tableaux will be called local satisfiability property. In turn, a completion graph for
a concept is a finite representation from which a tableau can be built. The algorithm in
[13] for satisfiability in ALCreg (including the transitive closure of roles and other role
operators) introduced a method to deal with loops which can hide unsatisfiable nodes.

Regarding undecidability results, [9] has shown that an arbitrary extension of role
inclusion axioms, such as adding R ◦ S v P , may lead to undecidability. Additionally,
as it turned out by [11], the interaction between transitive roles and number restrictions



causes also undecidability. The technique used to prove these undecidability results is
to reduce the domino problem, which is known to be undecidable [14], to the problem
in question.

Tableaux-based algorithms for expressive DLs such as SHIQ [11] and SHOIQ
[12] result in efficient implementations. This kind of algorithms relies on two structures,
the so-called tableau and completion graph. Roughly speaking, a tableau for a concept
represents a model for the concept and it is possibly infinite. A tableau translates satisfi-
ability of all given concept and role inclusion axioms into the satisfiability of constraints
imposed locally on each individual of the tableau by the semantics of concepts in the
individual’s label. This feature of tableaux will be called local satisfiability property.
To check satisfiability of a concept, tableaux-based algorithms try to build a comple-
tion graph whose finiteness is ensured by a technique, the so-called blocking technique.
It provides a termination condition and guarantees soundness and completeness. The
underlying idea of the blocking mechanism is to detect “loops” which are repeated
pieces of a completion graph. When transitive closure of roles is added to knowledge
bases, this blocking technique allows us to lengthen paths through such loops in order
to satisfy semantic constraints imposed by transitive closures. The algorithm in [13] for
satisfiability in ALCreg (including the transitive closure of roles and other role opera-
tors) introduced a method to deal with loops which can hide unsatisfiable nodes. This
method detects on so-called concept trees, “good” or “bad” cycles that are similar to
those between blocking and blocked nodes on completion trees.

To deal with transitive closure of roles occurring in terms such as ∃Q+.C, we have
to introduce a new expansion rule to build completion trees such that it can generate a
path formed from nodes that are connected by edges whose label contains role Q. In
addition, this rule propagates terms ∃Q+.C to each node along with the path before
reaching a node whose label includes concept C. Such a path may go through blocked
and blocking nodes and has an arbitrary length. To handle transitive closures of roles
occurring in role inclusion axioms such asR v Q+, we use another new expansion rule
that translates satisfaction of such axioms into satisfaction of a term ∃Q+.Φ. From the
path generated from ∃Q+.Φ, a cycle can be formed to satisfy the semantic constraint
imposed by R v Q+. Since the role Q, which will be defined to be simple, does not
occur in number restrictions, the cycle obtained from this way does not violate other
semantic constraints.

The contribution of the present paper consists of (i) proving that if we add transitive
closure of roles to SHIQ without restriction the obtained logic is undecidable even if
roles are simple according to the defintion presented in [11], (ii) designing a new logic,
namely SHIQ+, with a new definition for simple roles and presenting a tableaux-based
algorithm for satisfiability of concepts in SHIQ+.

2 The Description Logic SHIQ+

The logic SHIQ+ is an extension of SHIQ by allowing transitive closure of roles to
occur in concept and role inclusion axioms. In this section, we present the syntax and
semantics of the logic SHIQ+. This includes the definitions of inference problems and
how they are interrelated. The definitions reuse some notation introduced in [12].



Definition 1. Let R be a non-empty set of role names. We denote RI = {P− | P ∈ R}
and R+ = {Q+ | Q ∈ R ∪RI}.
∗ The set of SHIQ+-roles is R∪RI∪R+. A role inclusion axiom is of the formR v S
for two SHIQ+-roles R and S. A role hierarchy R is a finite set of role inclusion ax-
ioms.
∗ An interpretation I = (∆I , ·I) consists of a non-empty set ∆I (domain) and a func-
tion ·I which maps each role name to a subset of ∆I × ∆I such that, for R ∈ R,
Q+ ∈ R+,
R−
I
= {〈x, y〉 ∈ (∆I)2 | 〈y, x〉 ∈ RI}, (Q+)I =

⋃
n>0

(Qn)I with (Q1)I = QI and

(Qn)I = {〈x, y〉 ∈ (∆I)2 | ∃z ∈ ∆I , 〈x, z〉 ∈ (Qn−1)I , 〈z, y〉 ∈ QI}.
An interpretation I satisfies a role hierarchyR if RI ⊆ SI for each R v S ∈ R. Such
an interpretation is called a model ofR, denoted by I |= R.
∗ To simplify notations for nested inverse roles and transitive closures of roles, we de-
fine two functions ·	 and ·⊕ as follows:

R	 =


R− if R ∈ R,
S if R = S− and S ∈ R,
(S−)+ if R = S+ and S ∈ R,
S+ if R = (S−)+ and S ∈ R

R⊕ =


R+ if R ∈ R,
S+ if R = (S+)+ and S ∈ R,
(S−)+ if R = S− and S ∈ R,
(S−)+ if R = (S+)− and S ∈ R

∗ A relation ∗v is defined as the transitive-reflexive closure R+ of v on R ∪ {R	 v
S	 | R v S ∈ R} ∪ {R⊕ v S⊕ | R v S ∈ R} ∪ {Q v Q⊕ | Q ∈ R ∪RI}. We
denote S ≡ R iff R∗vS and S ∗vR.
∗ A role R is called simple w.r.t. R iff (i) Q⊕ ∗vR /∈ R+ for each Q ∈ R ∪ RI, and
(ii) R′ ∗vR, P ∗vR′⊕ ∈ R+ implies P ∗vR′ ∈ R+. We define a function Cyc(R) which
returns true iff R does not satisfy the condition (ii).

The reason for the introduction of two functions ·	 and ·⊕ in Definition 1 is that
they can avoid using R−− and R++ and it remains a unique nested case (R−)+.

Notice that a transitive role S (i.e. 〈x, y〉 ∈ SI , 〈y, z〉 ∈ SI implies 〈x, z〉 ∈ SI
where I is an interpretation) can be expressed by using a role axiom S⊕ v S. In
addition, a role R which is simple according to Definition 1 is simple according to [11]
as well. In fact, if Q⊕ ∗vR /∈ R+ for each Q ∈ R ∪RI then there is no transitive role
S such that S ∗vR ∈ R+. Otherwise, we have Q⊕ ∗vR ∈ R+ since Q⊕ ∗vS ∈ R+.
Finally, if R∗vS ∈ R+ and R is not simple according to Definition 1 then S is not
simple according to Definition 1.

Definition 2. Let C be a non-empty set of concept names.
∗ The set of SHIQ+-concepts is inductively defined as the smallest set containing all
C in C, >, C uD, C tD, ¬C, ∃R.C, ∀R.C, (≤nS.C) and (≥nS.C) where C and
D are SHIQ+-concepts, R is an SHIQ+-role and S is a simple role. We denote ⊥
for ¬>.
∗ An interpretation I = (∆I , ·I) consists of a non-empty set ∆I (domain) and a func-
tion ·I which maps each concept name to a subset of ∆I such that
>I = ∆I , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI , (¬C)I = ∆I\CI ,
(∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I , 〈x, y〉 ∈ RI ∧ y ∈ CI},



(∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I , 〈x, y〉 ∈ RI ⇒ y ∈ CI},
(≥nS.C)I = {x ∈ ∆I | card{y ∈ CI | 〈x, y〉 ∈ SI} ≥ n},
(≤nS.C)I ={x ∈ ∆I | card{y ∈ CI | 〈x, y〉 ∈ SI} ≤ n}
where card{S} is denoted for the cardinality of a set S.
∗ C v D is called a general concept inclusion (GCI) where C,D are SHIQ+-
concepts (possibly complex), and a finite set of GCIs is called a terminology T . An
interpretation I satisfies a GCI C v D if CI ⊆ DI and I satisfies a terminology T
if I satisfies each GCI in T . Such an interpretation is called a model of T , denoted by
I |= T .

∗ A conceptC is called satisfiable w.r.t. a role hierarchyR and a terminology T iff there
is some interpretation I such that I |= R, I |= T and CI 6= ∅. Such an interpretation
is called a model of C w.r.t. R and T . A pair (T ,R) is called a SHIQ+ knowledge
base and said to be consistent if there is a model I of both T and R, i.e., I |= T and
I |= R.

∗ A concept D subsumes a concept C w.r.t.R and T , denoted by C v D, if CI ⊆ DI
holds in each model I of (T ,R).

Since negation is allowed in the logic SHIQ+, unsatisfiability and subsumption
w.r.t. (T ,R) can be reduced each other: C v D iff Cu¬D is unsatisfiable. In addition,
we can reduce ontology consistency to concept satisfiability w.r.t. a knowledge base :
(T ,R) is consistent if A t ¬A is satisfiable w.r.t. (T ,R) for some concept name A.
Thanks to these reductions, it suffices to study the satisfiability of a concept C w.r.t. a
knowledge base (T ,R).

For the ease of construction, we assume all concepts to be in negation normal form
(NNF) i.e. negation occurs only in front of concept names. Any SHIQ+-concept can
be transformed to an equivalent one in NNF by using DeMorgan’s laws and some equiv-
alences as presented in [11]. For a concept C, we denote the nnf of C by nnf(C) and
the nnf of ¬C by ¬̇C

Let D be an SHIQ+-concept in NNF. We define sub(D) to be the smallest set that
contains all sub-concepts of D including D. In addition,

For a knowledge base (T ,R), we use R(T ,R) to denote the set of all role names oc-
curring in T ,R with their transitive closure and inverses. We denote by R+

(T ,R) the set
of transitive closure of roles occuring in R(T ,R). In addition, we define sets sub(T ,R)



and ŝub(T ,R) as follows:

sub(T ,R) =
⋃

CvD∈T

sub(nnf(¬C tD),R) where (1)

sub(E,R) = sub(E) ∪ {¬̇C | C ∈ sub(E)} ∪ (2)
{∀S.C | (∀R.C ∈ sub(E), S ∗vR) or (¬̇∀R.C ∈ sub(E), S ∗vR)

where S occurs in T orR} ∪
{∃P.β | β ∈ {C, ∃P⊕.C},∃P⊕.C ∈ sub(E)}

Φσ =
l

C∈σ ∪ {¬̇D|D∈sub(T ,R)\σ}

C for each σ ⊆ sub(T ,R) (3)

Φ = {Φσ | σ ⊆ sub(T ,R)} (4)

ŝub(T ,R) = Φ ∪ {α.β | α ∈ {∃P.∃P⊕,∃P⊕,∃P}, P⊕ ∈ R+
(T ,R), β ∈ Φ} (5)

2.1 Tableaux for SHIQ+

Tableau structure is introduced to describe a model of a concept w.r.t. a terminology
and role hierarchy. Properties in such a tableau definition express semantic constraints
resulting directly from the logic constructors in SHIQ+.

Considering the tableau definition for SHIQ presented in [11], Definition 3 adopts
two additional properties, namely P8 and P9. In particular, P8 imposes a global con-
straint on a set of individuals of a tableau. This causes the tableaux to lose the local
satisfiability property. A tableau has the local satisfiability property if each property of
the tableau is related to only one node and its neighbors. This means that, for a graph
with a labelling function, checking each node of the graph and its neighbors for each
property is sufficient to prove whether this graph is a tableau. The tableau definition for
SHIQ in [11] has the local satisfiability property although SHIQ includes transitive
roles. The propagation of value restrictions on transitive roles by ∀+-rule (i.e. the rule
for ∀R.C if R is transitive or includes a transitive role) and the absence of number re-
strictions on transitive roles help to avoid global properties that impose a constraint on
an arbitrary set of individuals in a tableau.

Definition 3. Let (T ,R) be a SHIQ+ knowledge base. A tableau T for a concept D
w.r.t (T ,R) is defined to be a triplet (S,L, E) such that S is a set of individuals, L: S
→ 2sub(T ,R)∪ŝub(T ,R) and E: R(T ,R)→ 2S×S, and there is some individual s ∈ S such
that D ∈ L(s). For all s ∈ S, C,C1, C2 ∈ sub(T ,R) ∪ ŝub(T ,R), R,S ∈ R(T ,R)

and Q⊕ ∈ R+
(T ,R), T satisfies the following properties:



P1 If C1 v C2 ∈ T then nnf(¬C1 t C2) ∈ L(s),
P2 If C ∈ L(s) then ¬̇C /∈ L(s),
P3 If C1 u C2 ∈ L(s) then C1 ∈ L(s) and C2 ∈ L(s),
P4 If C1 t C2 ∈ L(s) then C1 ∈ L(s) or C2 ∈ L(s),
P5 If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t),
P6 If ∀S.C ∈ L(s), Q⊕ ∗vS and 〈s, t〉 ∈ E(Q) then ∀Q⊕.C ∈ L(t),
P7 If ∃P.C ∈ L(s) with P ∈ R(T ,R) \R+

(T ,R) then there is some t ∈ S such that
〈s, t〉 ∈ E(P ) and C ∈ L(t),

P8 If ∃Q⊕.C ∈ L(s) then (∃Q.C t ∃Q.∃Q⊕.C) ∈ L(s), and there are s1, · · · , sn ∈ S
such that ∃Q.C ∈ L(s0) ∪ L(sn−1) and 〈si, si+1〉 ∈ E(Q) with 0 ≤ i < n, s0 = s and
∃Q⊕.C ∈ L(sj) for all 0 ≤ j < n.

P9 If 〈s, t〉 ∈ E(Q⊕) then ∃Q⊕.Φσ ∈ L(s) with σ = L(t) ∩ sub(T ,R) and
Φσ =

l

C∈σ ∪ {¬̇D|D∈sub(T ,R)\σ}

C,

P10 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(R	),
P11 If 〈s, t〉 ∈ E(R) and R∗vS then 〈s, t〉 ∈ E(S),
P12 If (≤ nS.C) ∈ L(s) then card{ST (s, C)} ≤ n,
P13 If (≥ nS.C) ∈ L(s) then card{ST (s, C)} ≥ n,
P14 If (≤ nS.C) ∈ L(s) and 〈s, t〉 ∈ E(S) then C ∈ L(t) or ¬̇C ∈ L(t) where

ST (s, C) := {t ∈ S|〈s, t〉 ∈ E(S) ∧ C ∈ L(t)},

Notice that all properties in Definition 3, particularly, the properties P8 and P9 en-
sure that the label of nodes is a subset of sub(T ,R)∪ŝub(T ,R). In the remainder of the
sections, we formulate and prove a lemma that affirms that a tableau represents exactly
a model for the concept. P8 in Definition 3 expresses not only the semantic constraint
imposed by the transitive closure of roles occurring in concepts such as ∃Q⊕.C (i.e. a
path including nodes are connected by edges containingQ and the label of the last node
contains C) but also the non-determinism of transitive closure of roles (i.e. the term
∃Q.C may be chosen at any node of such a path to satisfy ∃Q⊕.C). Additionally, P8
and P9 in Definition 3 enable to satisfy each transitive closureQ⊕ occurring in the label
of an edge 〈s, t〉 with simple role Q. In fact, P9 makes Φσ belong to the label of a node
t′ and s connected to t′ by edges containingQ due to P8. The definition of Φσ allows t′

to be combined with t without causing contradiction. Moreover, this combination does
not violate number restrictions since Q is simple. For this reason, the new definition for
simple roles presented in Definition 1 is crucial to decidability of SHIQ+.

In addition, P8 and P9 defined in this way do not require explicitly cycles to satisfy
role inclusion axioms such as R v Q⊕. This makes possible design of tableaux-based
algorithm for SHIQ+ which aims to build tree-like structure i.e. no cycle is explic-
itly required to be embedded within this structure. The following lemma affirms that a
tableau represents exactly a model for the concept.

Lemma 1. Let (T ,R) be a SHIQ+ knowledge base. Let D be a SHIQ+ concept. D
is satisfiable w.r.t. (T ,R) iff there is a tableau for D w.r.t. (T ,R).



Proof. • ”If-direction”. Let T = (S,L, E) be a tableau for (T ,R). A model I =
(∆I , .I) can be defined as follows:
∆I = S,
AI = {s | A ∈ L(s) for all concept name A in T },
SI = E(S) ∪ E ′(S) ∪

⋃
Q⊕ ∗vS∈R+

(E(Q) ∪ E ′(Q))+ for all role name S in T andR

where
E ′(R) =

⋃
Cyc(Q),Q∗vR∈R+

{〈s, t〉 | 〈s′, t′〉 ∈ E(Q),L′(s) = L′(s′),L′(t) = L′(t′)}

with L′(w) = L(w) ∩ sub(T ,R)

Due to R∗vS ∈ R+ iff R	 ∗vS	 ∈ R+, and Cyc(Q) iff Cyc(Q	) and the definition of
E ′(S), we have :

E ′(S	) = {〈t, s〉 | 〈s, t〉 ∈ E ′(S)} (6)

Due to P11 and the definition of E ′(S), we have :

R∗vS ∈ R+ ⇒ E ′(R) ⊆ E ′(S) (7)

Due to Definition 1, it follows :

(S+)I =
⋃
n>0

{(〈s0, s1〉, · · · , 〈sn−1, sn〉) | 〈si, si+1〉 ∈ SI , 0 ≤ i ≤ n− 1} (8)

To show that I is a model of (T ,R), we have to show:

1. I |= R. AssumeR v S ∈ R. We have to proveRI ⊆ SI . Since (S−)+ ≡ (S+)−,
R v S iffR− v S−, andR v S− iffR− v S, it suffices to consider the following
unnested cases :
(a) R = P− and S ∈ R. Let 〈s, t〉 ∈ (P−)I . This implies that 〈t, s〉 ∈ P I . Due

to the definition of P I , we consider the following cases:
(i) Assume that 〈t, s〉 ∈ E(P ). This implies that 〈s, t〉 ∈ E(P−), and thus
〈t, s〉 ∈ E(R) due to P10 and P11. It follows that 〈t, s〉 ∈ RI due to the
definition of RI .
(ii) Assume that 〈t, s〉 ∈ E ′(P ) i.e. there are individuals s′, t′ and some role
Q such that L′(s) = L′(s′), L′(t) = L′(t′), 〈t′, s′〉 ∈ E(Q) with Cyc(Q)
and Q∗vP ∈ R+. Due to P10 and P11, this implies that 〈s′, t′〉 ∈ E(Q	),
Cyc(Q	) and Q	 ∗vS ∈ R+. From the definition of SI it follows that 〈s, t〉 ∈
SI .
(iii) Assume that there are 〈t, s1〉, · · · , 〈sn, s〉 ∈ E(Q)∪E ′(Q) with Q⊕ ∗vP ∈
R+. This implies that 〈s, sn〉, · · · , 〈s1, t〉 ∈ E(Q	) ∪ E ′(Q	) due to P10 and
(6). Moreover, from Q⊕ ∗vP ∈ R+ it follows that (Q	)⊕ ∗vP	 ∈ R+, and
thus (Q	)⊕ ∗vR ∈ R+. Due to the definition of RI , we have 〈s, t〉 ∈ RI .

(b) R = P+ and S ∈ R. Let 〈s, t〉 ∈ (P+)I . From (8), there are 〈s, s1〉, · · · , 〈sn, t〉
∈ P I . Due to the definition of P I , we consider the following cases:
Assume that 〈si, si+1〉 ∈ E(P ) ∪ E ′(P ).



Assume that there are 〈si, w1〉, · · · , 〈wm, si+1〉 ∈ E(P ′)∪E ′(P ′) whereP ′+ ∗vP ∈
R+ with some i ∈ {0, n + 1}, s0 = s, sn+1 = t. Since P ′+ ∗vP ∈ R+ im-
plies P ′ ∗vP ∈ R+, P11 and (7), it holds that 〈si, w1〉, · · · , 〈wm, si+1〉 ∈
E(P ) ∪ E ′(P ). This implies that

∃u1, · · · , uk : 〈s, u1〉, · · · , 〈uk, t〉 ∈ E(P ) ∪ E ′(P ) (9)

According to the definition of SI with P+ ∗vS ∈ R+ and (10), we have 〈s, t〉 ∈
SI .

(c) R ∈ R and S = Q+. Let 〈s, t〉 ∈ RI . According to the definition of RI , we
consider the following cases:
(i) Assume that 〈s, t〉 ∈ E(R) and 〈s, t〉 /∈ E(Q) (if 〈s, t〉 ∈ E(Q) then 〈s, t〉 ∈
QI ⊆ (Q+)I). By P11, we have 〈s, t〉 ∈ E(Q+). Moreover, due to P7, P8 and
P9 there are 〈s, s1〉, · · · , 〈sn−1, sn〉 ∈ E(Q) withΦσ =

l

C∈σ∪{¬̇D|D∈sub(T ,R)\σ}

C ∈

L(sn) and σ = L(t)∩sub(T ,R) = L′(t). Due to P3 we have L′(t) ⊆ L′(sn).
Let D ∈ L(sn) ∩ sub(T ,R). If D /∈ L(t) ∩ sub(T ,R) then, by the defini-
tion of Φσ , ¬̇D ∈ L(t) ∩ sub(T ,R). By P2, this is not possible, and thus
L′(t) = L′(sn). Due to the definition of QI we have

〈sn−1, t〉 ∈ QI and 〈s, s1〉, · · · , 〈sn−2, sn−1〉 ∈ QI (10)

(ii) Assume that 〈s, t〉 ∈ E ′(R). According to the definition of E ′(R) there are
individuals s′, t′ and some role P such that L′(s) = L′(s′), L′(t) = L′(t′),
〈t′, s′〉 ∈ E(P ) with Cyc(P ) and P ∗vR ∈ R+. Due to P11 we have 〈s′, t′〉 ∈
E(Q+). Assume that 〈s′, t′〉 /∈ E(Q) (if 〈s′, t′〉 ∈ E(Q) then 〈s, t〉 ∈ QI ⊆
(Q+)I). Due to P7, P8 and P9 there are 〈s′, s1〉, · · · , 〈sn−1, sn〉 ∈ E(Q)
with Φσ ∈ L(sn) and σ = L(t′) ∩ sub(T ,R) = L′(t′). Since L′(s) = L′(s′),
L′(t) = L′(t′) = L′(sn), Cyc(Q), we have

〈s, s1〉, 〈sn−1, t〉 ∈ QI and 〈s1, s2〉, · · · , 〈sn−2, sn−1〉 ∈ QI (11)

due to the definition of QI .
(iii) Assume that there are 〈s, s1〉, · · · , 〈sn, t〉 ∈ E(P )∪ E ′(P ) with P+ ∗vR ∈
R+. Since P+ ∗vR ∈ R+ implies P ∗vR ∈ R+, P11 and (7), it holds that there
are 〈s, u1〉, · · · , 〈um, t〉 ∈ E(R) ∪ E ′(R). From (10) and (11) we obtain

∃v1, · · · , vk : 〈s, v1〉, · · · , 〈vk, t〉 ∈ QI (12)

(d) R = P+ and S = Q+. Due to (10), (11) and (12).
2. I |= T i.e. if C v D ∈ T then CI ⊆ DI .
3. DI 6= ∅.

The items 2 and 3 are proved if we can show that C ∈ L(s) implies s ∈ CI for all
s ∈ S (**). In fact, due to P1 it follows that nnf(¬C t D) ∈ L(s) for all s ∈ S
and C v D ∈ T . Due to (**) and Definition 2, we have s ∈ (nnf(¬C t D))I =
(¬C tD)I = (¬C)I ∪DI for all s ∈ S and C v D ∈ T . This implies that if s ∈ CI
then s ∈ DI . Therefore, the item 2 is shown.



Moreover, since T is a tableau for D and thus, there exists s ∈ S such that D ∈
L(s). Due to (**) it follows s ∈ DI 6= ∅. Therefore, the item 3 is shown.
We now prove (**) by induction on the length of a concept C, denoted len(C) where
C in NNF, is defined as follows:

len(A) := len(¬A) := 0
len(C1 u C2) := len(C1 t C2) := 1 + len(C1) + len(C2)
len(∀R.C) := len(∃R.C) := 1 + len(C)

Two basic cases are C = A or C = ¬A. If A ∈ L(s) then, by the definition of I,
s ∈ AI . If ¬A ∈ L(s) then, by P2, A /∈ L(s) and thus s /∈ AI . For the inductive step,
we have to distinguish several cases:

– C = C1 uC2. P3 and C ∈ L(s) imply C1, C2 ∈ L(s). By induction, we have s ∈
CI1 and s ∈ CI2 . Since I is an interpretation (Definition 2) hence s ∈ (C1 u C2)

I .
– C = C1 t C2. The same argument.
– C = ∃S.E with S ∈ R(T ,R) \ R+

(T ,R). According to P7, there is some t ∈ S

such that E ∈ L(t) and 〈s, t〉 ∈ E(S). By induction, we have t ∈ EI . From the
definition of SI it follows that 〈s, t〉 ∈ SI and thus s ∈ CI .

– C = ∃Q⊕.E. According to P8, there are s1, · · · , sn such that 〈s, s1〉, · · · , 〈sn−1, sn〉 ∈
E(Q) and E ∈ L(sn). By induction, we have sn ∈ EI . Moreover, from the defini-
tion of QI it follows that 〈s, s1〉, · · · , 〈sn−1, sn〉 ∈ QI and thus s ∈ CI .

– C = ∀S.E. Let t ∈ S be an individual such that 〈s, t〉 ∈ SI . According to the
definition of SI , we consider the following cases:
• 〈s, t〉 ∈ E(S). According to P5 it follows that E ∈ L(t). By induction, we

have t ∈ EI and thus s ∈ CI .
• 〈s, t〉 ∈ E ′(S). This implies that there are indivuduals s′, t′ and some role
P such that L′(s) = L′(s′), L′(t) = L′(t′), 〈t′, s′〉 ∈ E(P ) with Cyc(P )
and P ∗vS ∈ R+. We have ∀S.E ∈ sub(T ,R) and thus ∀S.E ∈ L′(s′).
Due to P11 and P ∗vS ∈ R+ we have 〈t′, s′〉 ∈ E(S). From P5 it follows
E ∈ L′(t′) = L′(t) ⊆ L(t). By induction, we have t ∈ EI and thus s ∈ CI .

• 〈s, s1〉, · · · , 〈sn, t〉 ∈ E(Q) ∪ E ′(Q) with Q⊕ ∗vS ∈ R+. By the definition
of QI , we have 〈s, s1〉, · · · , 〈sn, s〉 ∈ QI . Moreover, according to P6 (with
Q⊕ ∗vQ⊕ ∈ R+ and the same argument above if 〈si, si+1〉 ∈ E ′(Q)), it follows
that ∀Q⊕.E ∈ L(si) for all i ∈ {1, · · ·n}. Due to Q∗vQ⊕ ∈ R+ and P11 it
follows that 〈sn, t〉 ∈ E(Q⊕). This implies that E ∈ L(t) due to P5. By
induction, we have t ∈ EI and hence s ∈ CI .

– C = (≥ nS.E) where S is simple. We have #ST (s, E) ≥ n. This means that there
are s1, · · · , sn ∈ S such that 〈s, si〉, · · · , 〈s, si〉 ∈ E(S), E ∈ L(si) with si 6= sj
for all i 6= j. By induction, we have si ∈ EI , and 〈s, si〉 ∈ SI since E(S) ⊆ SI .
Thus, s ∈ (≥ nS.E)I .

– C = (≤ nS.E) where S is simple. Since S is simple, according to the def-
inition of I, we have E ′(S) = ∅ and

⋃
Q⊕ ∗vS∈R+

(E(Q) ∪ E ′(Q))+ = ∅. Thus,

SI = E(S). Moreover, according to P12, #ST (s, C) ≤ n. We try to show
#SI(s, E) ≤ #ST (s, E). By absurdity, assume that there is some t ∈ S such
that t ∈ EI , 〈s, t〉 ∈ SI but E /∈ L(t) (since E(S) = SI). According to P14, we
have ¬̇E ∈ L(t). By induction, we have t ∈ (¬̇E)I which contradicts t ∈ EI .



• ”Only-If-direction”. Let I = (∆I , .I) be a model of (T ,R).
Let Φ1(s) = {C ∈ sub(T ,R) | s ∈ CI}. First, we show that

For each s ∈ ∆I , it holds that s ∈ (
l

C∈Φ1(s) ∪ {¬̇D|D∈sub(T ,R)\Φ1(s)}

C )I (13)

In fact, for each D ∈ sub(T ,R) and for each s ∈ ∆I it holds that s ∈ (¬D t
D)I = ∆I . Moreover, if D /∈ {C ∈ sub(T ,R) | s ∈ CI} then s /∈ DI and thus
s ∈ (¬̇D)I = (¬D)I .
A tableau T = (S,L, E) for (T ,R) can be defined as follows:
S = ∆I ,
E(R) = RI for all role R occurring in T andR,
L(s) = {E ∈ sub(T ,R) ∪ {

l

C∈Φ1(s) ∪ {¬̇D|D∈sub(T ,R)\Φ1(s)}

C} | s ∈ EI}

We now show that T is a tableau of (T ,R).

– P1, P2, P3, P4. Obvious.
– P5. Let ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S). According to the definition of T , 〈s, t〉 ∈
E(S) = SI . Since I is a model, we have t ∈ CI . Due to the definition of T , we
have C ∈ L(t).

– P6. Let ∀S.C ∈ L(s) with Q⊕ ∗vS and 〈s, t〉 ∈ E(Q). According to the definition
of T , 〈s, t〉 ∈ E(Q) = QI . We have to show that ∀Q⊕.C ∈ L(t). Assume that
there are 〈t, t1〉, · · · , 〈tn−1, tn〉 ∈ QI . Due to that Q⊕ ∗vS and I is a model, we
have 〈s, tn〉 ∈ SI , and thus tn ∈ CI . This implies that t ∈ (∀Q⊕.C)I . By the
definition of T , we have ∀Q⊕.C ∈ L(t).

– P7. Let ∃S.C ∈ L(s). There is some t such that 〈s, t〉 ∈ SI and t ∈ CI . According
to the definition of T , 〈s, t〉 ∈ E(S) = SI and C ∈ L(t).

– P8. Let ∃P⊕.C ∈ L(s). There are 〈s, s1〉, · · · , 〈sn−1, sn〉 ∈ P I , sn ∈ CI and
∃P⊕.C ∈ L(si) with 0 ≤ i < n, s0 = s. According to the definition of T , we have
〈si, si+1〉 ∈ E(P ) such that C ∈ L(sn), ∃Q.C ∈ L(sn−1), (∃P⊕.C) ∈ L(si)
with 0 ≤ i < n. We show that ∃P.C ∈ L(s) or ∃P.∃P⊕.C ∈ L(s).
If n = 1 then C ∈ L(s1) and s1 ∈ CI . This implies s ∈ (∃P.C)I . Due to the
definition of T , we have ∃P.C ∈ L(s).
Assume that n > 1. We have s1 ∈ (∃P⊕.C)I . This implies that s ∈ (∃P.∃P⊕.C)I
due to 〈s, s1〉 ∈ P I . From the definition of T , it follows that ∃P.∃P⊕.C ∈ L(s).

– P9. Let 〈s, t〉 ∈ E(Q⊕). This implies that there are 〈s, s1〉, · · · , 〈sn, t〉 ∈ QI . From
the definition of T , we have 〈s, s1〉, · · · , 〈sn, t〉 ∈ E(Q). Due to the definition
of T and (13), we have t ∈ (Φσ)

I with σ = L(t) ∩ sub(T ,R). This implies
s ∈ (∃Q⊕.Φσ)I . From the definition of T , we have (∃Q⊕.Φσ) ∈ L(s).

– P10-P14. Obvious.

3 A tableaux-based decision procedure for SHIQ+

As mentioned, a tableau for a concept represents a model that is possibly infinite. How-
ever, the goal of a tableaux-based algorithm is to find a finite structure that has to imply
a tableau. Conversely, the existence of a tableau can guide us to build such a structure.
Such a finite structure is introduced in Definition 4, namely, completion tree.



Definition 4. Let (T ,R) be a SHIQ+ knowledge base. Let D be a SHIQ+ concept.
A completion tree for D and (T ,R) is a tree T = (V,E,L, xT, ˙6=) where
∗ V is a set of nodes containing a root node xT ∈ V . Each node x ∈ V is labelled with
a function L such that L(x) ⊆ sub(T ,R) ∪ ŝub(T ,R). In addition, ˙6= is a symetric
binary relation over V .
∗ E is a set of edges. Each edge 〈x, y〉 ∈ E is labelled with a function L such that
L(〈x, y〉) ⊆ R(T ,R).
∗ If 〈x, y〉 ∈ E then y is called a successor of x, denoted by y ∈ succ1(x), or x is called
the predecessor of y, denoted by x = pred1(y). In this case, we say that x is a neighbor
of y or y is a neighbor of x. If z ∈ succn(x) (resp. z = predn(x)) and y is a successor
of z (resp. y is the predecessor of z) then y ∈ succ(n+1)(x) (resp. y = pred(n+1)(x))
for all n ≥ 0 where succ0(x) = {x} and pred0(x) = x.
∗ A node y is called a R-successor of x, denoted by y ∈ succ1R(x) (resp. y is called
the R-predecessor of x, denoted by y = pred1R(x)) if there is some role R′ such that
R′ ∈ L(〈x, y〉) (resp.R′ ∈ L(〈y, x〉)) andR′ ∗vR. A node y is called aR-neighbor of x
if y is either a R-successor or R-predecessor of x. If z is a R-successor of y (resp. z is
theR-predecessor of y) and y ∈ succnR(x) (resp. y = prednR(x)) then z ∈ succ

(n+1)
R (x)

(resp. z = pred
(n+1)
R (x)) for n ≥ 0 with succ0R(x) = {x} and x = pred0R(x).

∗ For a node x and a role S, we define the set ST(x,C) of x’s S-neighbors as follows:

ST(x,C) = {y ∈ V | y is a S-neighbor of x and C ∈ L(x)}

∗ A node x is called blocked by y, denoted by y = b(x), if there are numbers n,m > 0
and nodes x′, y, y′ such that

1. xT = predn(y), y = predm(x), and
2. x′ = pred1(x), y′ = pred1(y), and
3. L(x) = L(y), L(x′) = L(y′), and
4. L(〈x′, x〉) = L(〈y′, y〉), and
5. if there are z, z′ such that z′ = pred1(z), predi(z′) = xT, L(z) = L(y), L(z′) =
L(y′) and L(〈z′, z〉) = L(〈y′, y〉) then n ≤ i.

∗ We define an extended function ŝucc from succ over T as follows:

– if x has a successor y (resp. x has a R-successor y) that is not blocked then y ∈
ŝucc

1
(x) (resp. y ∈ ŝucc

1
R(x)),

– if x has a successor z (resp. x has a R-successor z) that is blocked by b(z) then
b′(z) ∈ ŝucc

1
(x) (resp. b(z) ∈ ŝucc

1
R(x)).

– if y ∈ ŝucc
n
R(x) and z ∈ ŝucc

1
R(y) then z ∈ ŝucc

(n+1)
R (x) for n ≥ 0.

∗ A node z is called a ∃R⊕.C-reachable of xwith ∃R⊕.C ∈ L(x) if there are x1, · · · , xk+n ∈
V with xk+n = z, x0 = x and k + n ≥ 0 such that xi = prediR(x0), ∃R⊕.C ∈ L(xi)
with i ∈ {0, · · · , k}, and xj+k ∈ ŝucc

j
R(xk), ∃R⊕.C ∈ L(xj+k), ∃R.C ∈ L(x(k+n))

with j ∈ {0, · · · , n}.
∗ Clashes : T is said to contain a clash if one of the following conditions holds:



1. There is some node x ∈ V such that {A, ¬̇A} ⊆ L(x) for some concept name
A ∈ C,

2. There is some node x ∈ V with (≤ nS.C) ∈ L(x) and there are (n + 1) S-
neighbors y1, · · · , yn+1 of x such that yi ˙6= yj and C ∈ L(xi) for all 1 ≤ i < j ≤
(n+ 1),

3. There is some node x ∈ V with ∃R⊕.C ∈ L(x) such that there does not exist any
∃R⊕.C-reachable node y of x,

The definition of tableaux provides a strategy to design an algorithm that can be
described by a set of rules, namely expansion rules. Algorithm 2 builds a completion
tree for a SHIQ+ concept by applying the expansion rules in Figure 2 and 3. The
expansion rules in 2 were given in [11]. We introduce two new expansion rules that
correspond to P8 and P9 in Definition 3.

Algorithm 2 builds a completion tree for a SHIQ+ concept by applying the expan-
sion rules in Figure 2 and 3. The expansion rules in Figure 2 were given in [11]. We
introduce two new expansion rules that correspond to P8 and P9 in Definition 3.

In comparison with SHIQ, there is a new source of non-determinisms that could
augment the complexity of an algorithm for satisfiablity of concepts in SHIQ+. This
source comes from the presence of transitive closure of role in concepts. This means
that for each occurrence of a term such as ∃Q⊕.C in the label of a node of a completion
tree we have to check the existence of a sequence of edges such that the label of each
edge contains Q and the label of the last node contains C. The process for checking the
existence of paths whose length is arbitrary must be translated into a process that works
for a finite structure. To do this, we reuse the blocking condition introduced in [11]
and introduce a function ŝucc(x) that returns the set of x’s successors in a completion
tree. An infinite path over a completion tree can be defined thanks to this function. The
∃+-rule in Figure 3 generates all possible paths. The clash-freeness of the third kind in
Definition 4 ensures that a “good” path has to be picked from this set of all possible
paths.

The function checkReachabilityQC(x, d,B) depicted in Algorithm 1 represents an
algorithm for checking the clash-freeness of the third kind for a completion tree. It
returns a ∃Q⊕.C-reachable node of x if there exists one. In this function, the parameter
x represents a node of the tree to be checked i.e. there is a term such as ∃Q⊕.C ∈ L(x).
The parameter d indicates the direction to search from x. Depending on d = 1 or
d = 0, the algorithm goes up to ancestors of x or goes down to descendants of x
respectively. When the algorithm goes down, it never goes up again. The subset B ⊆ V
represents the set of all blocked nodes among the nodes that the algorithm have visited.
The function checkReachabilityQC(x, 1, ∅) would be called for each non-blocked node
x of a completion tree and for each term such as ∃Q⊕.C ∈ L(x).

As shown in Lemma 2, the complexity of Algorithm 1 is bounded by a double
exponential function in size of inputs.

Lemma 2 (Termination). Let (T ,R) be a SHIQ+ knowledge base. LetD be a SHIQ+-
concept w.r.t. (T ,R). Algorithm 2 terminates.

Proof. The termination of Algorithm 2 is a consequence of the following claims:



v-rule: if C v D ∈ T and nnf(¬C tD) /∈ L(x)
then L(x)←− L(x) ∪ {nnf(¬C tD)}

u-rule: if C1 u C2 ∈ L(x) and {C1, C2} 6⊆ L(x)
then L(x)←− L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ (x) and {C1, C2} ∩ L(x) = ∅
then L(x)←− L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, and
2. x has no S-neighbour y with C ∈ L(y)

then create a new node y with L(〈x, y〉)={S} and L(y)={C}
∀-rule: if 1. ∀S.C ∈ L(x), and

2. there is a S-neighbour y of x such that C /∈ L(y)
then L(y)←− L(y) ∪ {C}

∀+-rule: if 1. ∀S.C ∈ L(x), and
2. there is some Q with Q⊕ ∗vS, and
3. there is an Q-neighbour y of x such that ∀Q⊕.C /∈ L(y)

then L(y)←− L(y) ∪ {∀Q⊕.C}
ch-rule: if 1. (≤ n S.C) ∈ L(x), and

2. there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅
then L(y)←− L(y) ∪ {E} for some E ∈ {C, ¬̇C}

≥-rule: if 1. (≥ n S.C) ∈ L(x) and x is not blocked, and
2. there are no n S-neighbors y1, ..., yn such that C ∈ L(yi), and yi ·6=yj for

1 ≤ i < j ≤ n,
then create n new nodes y1, ..., yn with L(〈x, yi〉)={S},
L(yi)={C}, and yi ·6=yj for 1 ≤ i < j ≤ n.

≤-rule: if 1. (≤ n S.C) ∈ L(x), and
2. card{ST(x,C)} > n and there are two S-neighbors y, z of x with
C ∈ L(y) ∩ L(z), y is not an ancestor of z, and not y ·6=z

then 1. L(z)←− L(z) ∪ L(y) and L(〈x, y〉)←− ∅
2. If z is an ancestor of x

then L(〈z, x〉)←− L(〈z, x〉) ∪ {R	 | R ∈ L(〈x, y〉)}
else L(〈x, z〉)←− L(〈x, z〉) ∪ L(〈x, y〉)

4. Add u ·6=z for all u such that u ·6=y

Fig. 2. Expansion rules for SHIQ presented in [11]

∃+-rule: if ∃S⊕.C ∈ L(x) and (∃S.C t ∃S.∃S⊕.C) /∈ L(x)
then L(x)←− L(x) ∪ {∃S.C t ∃S.∃S⊕.C}

⊕-rule: if x has a P⊕-neighbor y and ∃P⊕.Φσ /∈ L(x) with σ = L(y) ∩ sub(T ,R)
then L(x) = L(x) ∪ {∃P⊕.Φσ}

Fig. 3. New expansion rules for SHIQ+



checkReachabilityQC(x, d,B)1

if ∃Q.C ∈ L(x) then2
return true;3

if d = 1 then4
if there is pred1Q(x) with ∃Q⊕.C ∈ L(pred1Q(x)) then5

checkReachabilityQC(pred
1
Q(x), 1,B) ;6

foreach x′ ∈ succ1Q(x) such that ∃Q⊕.C ∈ L(x′) do7
if ∃Q.C ∈ L(x′) then8

return true;9

if x′ is not blocked then10

checkReachabilityQC(x
′, 0,B) ;11

else12
if x′ /∈ B then13
B = B ∪ {x′};14

checkReachabilityQC(b(x
′), 0,B) ;15

return false;16

Algorithm 1: checkReachabilityQC(x, d,B) for checking the existence of a
∃Q⊕.C-reachable node of x ∈ V where d ∈ {1, 0}, B ⊆ V , ∃Q⊕.C ∈ L(x)
and T = (V,E,L, xT, ˙6=) is a completion tree.

Input : A SHIQ+ knowledge base (T ,R) and a SHIQ+-concept D
Output: Is D satisfiable w.r.t. (T ,R) ?

Let T = (V,E,L, xT, ˙6=) be an initial tree such that V = {xT}, L(xT) = {D}, and1

there is no x, y ∈ V such that x ˙6= y;
while there is a non-empty set S of expansion rules in Figure 2 and 3 such that each r ∈ S2
can be applied to a node x ∈ V do

Apply r ;3

if there is a clash-free tree T′ which is built by Line 1 to 3 then4
YES ;5

else6
NO ;7

Algorithm 2: Algorithm for building a completion tree for a SHIQ+-concept
w.r.t. a SHIQ+ knowledge base



1. Applications of rules in Figure 2 and 3 do not remove concepts from the label
of nodes. Moreover, applications of rules in Figure 2 and 3 do not remove roles
from the label of edges except that they may set the label of edges to an empty
set. However, when the label of an edge becomes empty it remains to be empty
forever. Therefore, we can compute a upper bound of the completion tree’s height
from the blocking condition. This upper bound equals K = 22m+k where m =

card{sub(T ,R) ∪ ŝub(T ,R)} and k is the number of roles occurring in T and
R plus their inverse and transitive closure. Moreover, the number of neighbors of
any node is bounded by M =

∑
mi where mi occurs in a number restriction term

(≥ miR.C) that appears in T .
2. Algorithm 1 checks the clash-freeness of the third kind for each x ∈ V with
∃Q⊕.C ∈ L(x). To do this, it starts from x and go up to an ancestor x′ of x, and
go down to a descendant of x′ through the function succ(x′). The length of such a
path is bounded by K ×L where K is given above and L is the number of blocked
nodes of the completion tree. Algorithm 1 may consider all paths which go though
all possible blocked nodes. The cardinality of this set is bounded by the number of
all permutations of the blocked nodes. Therefore, the complexity of Algorithm 1
is bounded by (K × L)× L!. Algorithm 1 would be called for each occurrence of
each term such as ∃Q⊕.C that occurs in each node v ∈ V .

Lemma 3 (Soundness). Let (T ,R) be a SHIQ+ knowledge base. LetD be a SHIQ+-
concept w.r.t. (T ,R). If Algorithm 2 can build a clash-free completion tree for D w.r.t.
(T ,R) then there is a tableau for D w.r.t. (T ,R).

Proof. Assume that T = (V,E,L, xT, ˙6=) is a clash-free completion tree for D w.r.t.
(T ,R). First, we build an extended tree T̂ = (V̂ , Ê,L, xT̂, ˙6=) from T with help of
functions ŝucc and b(x):

– xT̂ = xT,
– If x ∈ V̂ and x′ ∈ ŝucc(x) then x′ ∈ V̂ . In particular, if z, z′ are two disctint

successors of x such that b(z) = b(z′) then b(z) 6= b(z′) in ŝucc
1
R(x).

From the construction, it follows that if s, s′ ∈ S and s 6= s′ then ŝucc
1
(s) ∩

ŝucc
1
(s′) = ∅. We define a tableau T = (S,L′, E) for D as follows:

– We define S =
⋃
n≥0

ŝucc
n
(xT). Note that S can be considered as the nodes of an

extended tree of T defined by using ŝucc.
– For each s ∈ ŝucc

n
(xT) there is a unique xs ∈ V such that xs ∈ succk(xT) and

s ∈ ŝucc
l
(xs) with n = k + l. We define L′(s) = L(xs).

– E(R) = E1(R) ∪ E2(R) where
E1(R) = {〈s, t〉 ∈ S2 | R ∈ L(〈xs, xt〉) ∨R	 ∈ L(〈xt, xs〉)}, and
E2(R) = {〈s, t〉 ∈ S2 | (R ∈ L(〈xs, z〉) ∧ (b(z) = xt)) ∨ (R	 ∈ L(〈xt, z′〉)) ∧
(b(z′) = xs))}

We now show T satisfies all properties in Definition 3.



– P1-P5 hold due to the non-applicable of v-rule, u-rule and t-rule in Figure 2 and
the facts that T is clash-free.

– For P6, assume that s, t ∈ S with ∀S.C ∈ L′(s), Q⊕ ∗vS and 〈s, t〉 ∈ E(Q). By the
definition of T , xt is a Q⊕-neighbor of xs. Due to the non-applicable of ∀+-rule, it
follows that ∀Q⊕.C ∈ L(xt). By the definition of T , we have ∀Q⊕.C ∈ L′(t).

– For P7, assume that s ∈ S with ∃S.C ∈ L′(s). Due to the non-applicable of ∃-rule,
it follows that xs has a S-neighbor xt such that C ∈ L(xt). By the definition of T ,
we have 〈s, t〉 ∈ E(S) and C ∈ L′(t).

– For P8, assume that s ∈ S with ∃Q⊕.C ∈ L′(s). Since T is clash-free (third
kind), xs has a ∃Q⊕.C-reachable xn i.e. there are x1, · · · , xn such that xi+1 is a
Q-neighbor of xi or xi+1 blocks a Q-successor of xi with xs = x0 and ∃Q.C ∈
L(xn), ∃Q⊕.C ∈ L(xi) for all i ∈ {0, · · · , n− 1}.
Assume that ∃Q.C ∈ L′(s). This implies that xs has a Q-neighbor y such that
C ∈ L(y) due to the non-applicable of ∃-rule. By the definition of T , there is some
t ∈ S with t ∈ ŝucc

1
(s) or s ∈ ŝucc

1
(t) such that 〈s, t〉 ∈ E(Q). Thus, P8 holds.

Assume that ∃Q.C /∈ L′(s). According to the definition of ∃Q⊕.C-reachable
nodes, there is some 0 ≤ k < n such that xk is an ancestor of x0 and xk+1 is a (ex-
tended) successor of xk. If k = 0 then there are s1, · · · , sn with xsi = xi, s0 = s
and 〈si, si+1〉 ∈ E(Q), ∃Q.C ∈ L′(sn), ∃Q⊕.C ∈ L′(si) for all i ∈ {0, · · · , n}.
Thus, P8 holds.
Assume that k > 0. We define a function p̂red

j
(t) as follows: p̂red

j
(t) = xT iff

t ∈ ŝucc
j
(xT) for all t ∈ S. This implies that for each t ∈ S there is a unique j

such that p̂red
j
(t) = xT. Let xT = p̂red

l
(s), xT = p̂red

m
(x0) = predm(x0) and

xT = p̂red
p
(xk) = predp(xk). We consider the following cases :

1. Assume m = l. By the definition of T there are s0, · · · , sn ∈ S such that
xsi = xi and 〈si, si+1〉 ∈ E(Q), ∃Q⊕.C ∈ L′(si) for all i ∈ {0, · · · , n − 1}
with s0 = s and ∃Q.C ∈ L′(sn). Thus, P8 holds.

2. Assume m < l. Let 0 ≤ K ≤ l be the least number such that x
p̂red

K
(s)

has a

∃Q⊕.C-reachable y with y ∈ ŝucc
K′

(x
p̂red

K
(s)

). We can pick K = l − p with

xT = p̂red
p
(xk) if there is no such K such that K < l − p. If K = 0 then

k = 0, which is considered. ForK > 0, we show that 〈p̂red
j
(s), p̂red

j+1
(s)〉 ∈

E(Q) and ∃Q⊕.C ∈ L′(p̂red
j+1

(s)) for all j ∈ {0, · · · ,K − 1} (***).

For j = 0, we have 〈s, p̂red
1
(s)〉 ∈ E(Q) and ∃Q⊕.C ∈ L′(p̂red

1
(s)), since

〈s, p̂red
1
(s)〉 /∈ E(Q) or ∃Q⊕.C /∈ L′(p̂red

1
(s)) implies K = 0.

Assume that ∃Q⊕.C ∈ L′(p̂red
j
(s)) with j < K. Due to the clash-freeness

(third kind) of T, x
p̂red

j
(s)

has a ∃Q⊕.C-reachable node w i.e. there are nodes
w1, · · · , wn′ and some k′ ≥ 0 such that wk′ is an ancestor of x

p̂red
j
(s)

, wk′+1

is a (extended) successor of wk, and wi is a Q-neighbor of wi+1 and ∃Q⊕.C ∈
L(wi), ∃Q.C ∈ L(wn′) for all i ∈ {0, · · · , n′ − 1} with w0 = x

p̂red
j
(s)

.

Due to j < K and L′(p̂red
j+1

(s)) = L(x
p̂red

j+1
(s)

), we have k′ > 0 and

∃Q⊕.C ∈ L′(p̂red
j+1

(s)). Thus, (***) holds.



From (***), it follows that there are si = p̂red
i
(s) for all i ∈ {0, · · · ,K}

and sK+j = ŝucc
j
(p̂red

K
(s)) for all j ∈ {1, · · · ,K ′} such that 〈sh, sh+1〉 ∈

E(Q) and ∃Q⊕.C ∈ L′(sh), ∃Q.C ∈ L′(sK+K′) for all h ∈ {0, · · · ,K+K ′}
with s0 = s. Thus, P8 holds.

– For P9, assume that s, t ∈ S with 〈s, t〉 ∈ E(Q⊕). By the construction of T , xt is
a Q⊕-successor of xs, or xt blocks a Q⊕-successor y of xs with L(y) = L(xt),
or xt is a Q⊕-predecessor of xs, or xs blocks a (Q	)⊕-successor z of xt with
L(z) = L(xs), L(z′) = L(xt) and L(〈xt, z〉) = L(〈z′, xs〉), 〈z′, xs〉 ∈ E. Due to
the non-applicable of ⊕-rule to xs and xt (or to xs and y, or to z′ and xs), we have
∃Q⊕.Φσ ∈ L(xs) with σ = L(xt) ∩ sub(T ,R). By the definition of T , it follows
that ∃Q⊕.Φσ ∈ L′(s) with σ = L′(t) ∩ sub(T ,R).

– P10 and P11 are consequences of the construction of T.
– For P12 assume that s ∈ S with (≥ nS.C) ∈ L′(s). Due to the non-applicable of
≥-rule, xs has n nodes x1, · · · , xn where xi is S-neighbor of xs or the blocking
node of S-successor of xs such that C ∈ L(xi) for i ∈ {1, · · · , n}. Due to the
definition of S, there are s1, · · · , sn ∈ S with xi = xsi , 〈s, si〉 ∈ E(S) and
C ∈ L′(si) for all i ∈ {1, · · · , n} such that si ∈ ŝucc(s) for all i ∈ {1, · · · , n},
or there is some k ∈ {1, · · · , n} such that s ∈ ŝucc(sk) and si ∈ ŝucc(s) for all
i ∈ {1, · · · , n} with i 6= k. By construction, we have si 6= sj with i 6= j.

– For P13 assume that s ∈ S with (≤ nS.C) ∈ L′(s). By absurdity, assume that
there are s1, · · · , sn+1 ∈ S such that 〈s, si〉 ∈ E(S) and C ∈ L′(si) for all i ∈
{1, · · · , n+ 1}.
If xs has no blocked successor and si 6= sj then xsi 6= xsj . Assume that xs has a
blocked successor z. This implies that there is some sk with k ∈ {1, · · · , n} such
that xsk = b(z). If si 6= sj and z, z′ are blocked with xsi = b(z), xsj = b(z′) then,
by the definition of ŝucc, z 6= z′. Due to the non-applicable of≤-rule, xs has (n+1)
distinct S-neighbors x1, · · · , x(n+1) such that C ∈ L(xi) for i ∈ {1, · · · , n},
which contradicts the clash-freeness (second kind).

– For P14 assume that s, t ∈ S with (≤ nS.C) ∈ L′(s) and 〈s, t〉 ∈ E(S). By the
definition of T , xt is a S-neighbor of xs and (≤ nS.C) ∈ L(xs). Due to the non-
applicable of ch-rule, we have C ∈ L(xt) or ¬̇C ∈ L(xt). Due to the definition of
T , this implies C ∈ L′(t) or ¬̇C ∈ L′(t).

Lemma 4 (Completeness). Let (T ,R) be a SHIQ+ knowledge base. Let D be a
SHIQ+-concept w.r.t. (T ,R). If there is a tableau for D w.r.t. (T ,R) then Algorithm
2 can build a clash-free completion tree for D w.r.t. (T ,R).

Proof. Let T = (S,L′, E) be a tableau for (T ,R). Let T = (V,E,L, xT, ˙6=) be a
completion tree. We show that there exists a sequence of expansion rule applications
such that it generates a clash-free completion tree (**).

We define a function π from V to S progressively over the construction of T such
that it satisfies the following conditions, denoted by (*):

1. L(x) ⊆ L′(π(x)) for x ∈ V ,
2. if y is a S-neighbor of x in T then 〈π(x), π(y)〉 ∈ E(S),
3. x ˙6= y implies π(x) 6= π(y),



4. if ∃Q⊕.C ∈ L(x) and ∃Q.C ∈ L′(π(x)) then ∃Q.C ∈ L(x) for x ∈ V ,

To prove (**), we have to show that (i) we can apply expansion rules such that
the conditions in (*) are preserved, and (ii) if the conditions (*) are satisfied when
constructing a completion tree by expansion rules then the obtained completion tree is
clash-free.

Since T is a tableau there is a node s ∈ S such that D ∈ L′(s). A node x ∈ V is
created with π(x) = s and L(x) = {D}. Applications ofv-rule, u-rule, ∃-rule, ∀-rule,
∀+-rule, ≤-rule, ≥-rule and ch-rule preserve the conditions in (*). The proof is similar
to that in [11]. We now concentrate on ∃+-rule, ⊕-rule and t-rule.

1. For ∃+-rule, assume that ∃Q⊕.C ∈ L(x). Due to the condition 1 in (*) (in-
duction hypothesis), we have ∃Q⊕.C ∈ L′(π(x)). Due to P8 and P4, we have
(∃Q.C t ∃Q.∃Q⊕.C) ∈ L′(π(x)) and {∃Q.C,∃Q.∃Q⊕.C} ∩ L′(π(x)) 6= ∅. Ap-
plication of ∃+-rule and t-rule to x yields {∃Q.C,∃Q.∃Q⊕.C} ∩ L(x) 6= ∅. If
∃Q.C ∈ L′(π(x)) then t-rule can be applied to x such that ∃Q.C ∈ L(x). Thus,
the conditions in (*) are preserved.

2. For ⊕-rule, assume that Q⊕ ∈ L(〈x, y〉). Due to the condition 2 in (*) (induc-
tion hypothesis), we have Q⊕ ∈ L′(〈π(x), π(y)〉). Moreover, due to P9 we have
∃P⊕.Φσ ∈ L′(π(x)) with σ = L′(π(y)) ∩ sub(T ,R). ⊕-rule can be applied to
〈x, y〉 such that L(x) = L(x) ∪ {∃P⊕.Φσ} with σ = L′(π(y)) ∩ sub(T ,R). This
implies that L(y) ⊆ L′(π(y)). Therefore, the conditions in (*) are preserved.

We show that if a completion tree T can be built with a function π satisfying (*)
then T is clash-free.

1. If the condition 1 in (*) is satisfied then there is no node x in T such that A, ¬̇A ∈
L(x) due to P2 and the condition 1. That means that T does not contain a clash of
the first kind as described in Definition 4.

2. There is no clash of the second kind in T if the conditions 1 to 3 in (*) are satisfied
with P12.

3. Assume that ∃Q⊕.C ∈ L(x). Due to the condition 1 in (*), we have ∃Q⊕.C ∈
L′(π(x)). According to P8 and P4, there are s1, · · · , sn ∈ S such that 〈si, si+1〉 ∈
E(Q), ∃Q⊕.C ∈ L′(si) and {∃Q.∃Q⊕.C,∃Q.C}∩L′(si) 6= ∅ for i ∈ {0, · · · , n−
1} with s0 = π(x), and ∃Q.C ∈ L′(s) ∪ L′(sn−1).
Assume ∃Q.C ∈ L′(s). Due to the condition 4 in (*), we have ∃Q.C ∈ L(x). This
implies that T does not have a clash of the third kind.
Assume ∃Q.C /∈ L′(s) and n > 1. Without loss of the generality, assume that
∃Q.C /∈ L′(si) for all i ∈ {0, · · · , n − 2} and ∃Q.C ∈ L′(sn−1) (otherwise, if
there is some 0 ≤ k < n− 1 such that ∃Q.C ∈ L′(sk) then we pick n = k + 1).
By applying successively ∃-rule, ∃+-rule and t-rule, there are nodes x1, · · · , xl ∈
V such that π(xi) = si, Q ∈ L(〈xi−1, xi〉) and {∃Q⊕.C,∃Q.∃Q⊕.C} ⊆ L(xi)
for all i ≤ l with some l ≤ n − 1. If l = n − 1 then x has a ∃Q⊕.C-reachable
node xl such that ∃Q.C ∈ L(xl) due to ∃Q⊕.C ∈ L(xl), ∃Q.C ∈ L′(π(xl)) and
the condition 4 in (*). If l < n− 1 and xl is blocked by z then we restart from the
node z with ∃Q⊕.C ∈ L(z) (since L(z) = L(xl)) finding x′1, · · · , x′l′ ∈ V which



have the same properties as those of x1, · · · , xl. This process can be repeated until
finding a node w ∈ V such that w is a ∃Q⊕.C-reachable node of x.
Therefore, T does not have a clash of the third kind.

The following theorem is a consequence of Lemmas 2, 3 and 4.

Theorem 1. Algorithm 2 is a decision procedure for satisfiability of SHIQ+-concepts
w.r.t. SHIQ+ knowledge bases.

4 SHIN+ is undecidable

This section show that if we add transitive closure of roles to the logic SHIN without
restriction on role hierachies then the obtained logic, denoted by SHIN+, is undecid-
able. More precisely, SHIN+ role names must be simple according to the definition
of simple roles for SHIQ i.e. each role nameR has no transitive sub-role w.r.t. the role
hierarchy. In addition, role axioms like R v S+ or R+ v S are allowed in SHIN+

role hierarchies where R,S are role names and R+ and S+ are transitive closures of R
and S respectively.

The undecidability proof uses a reduction of the domino problem [14]. The follow-
ing definition, which is taken from [11], reformulates the problem in a more precise
way.

Definition 5. A domino system D = (D,H,V) consists of a non-empty set of domino
types D = {D1, · · · , Dl} and of sets of horizontally and vertically matching pairs
H ⊆ D × D and V ⊆ D × D. The problem is to determine if, for a given D, there
exists a tiling of an N × N grid such that each point of the grid is covered with a
domino type inD and all horizontally and vertically adjacent pairs of domino types are
in H and V respectively, i.e., a mapping t : N × N → D such that for all m,n ∈ N,
〈t(m,n), t(m+ 1, n)〉 ∈ H and 〈t(m,n), t(m,n+ 1)〉 ∈ V .

The reduction of the domino problem to the satisfiability of SHIN+-concepts will
be carried out by (i) constructing a concept, namely A, and two sets of concept and
role inclusion axioms, namely TD and RD, and (ii) showing that the domino problem
is equivalent to the satisfiability of A w.r.t. TD andRD. Axioms in Definition 6 specify
a grid (Fig.4) that represents such a domino system.

Globally, given a domino set D = {D1, · · · , Dl}, we need axioms that impose that
each point of the plane is covered by exactly one DIi (axiom 8 in Definition. 6) and
ensure that each Di is compatibly placed in the horizontal and vertical lines (axiom 9).
Locally, the key idea is to use SHIN+ axioms for describing the grid as illustrated in
Figure 5. For example, we consider how a square of the grid can be formed. Axiom 10
in Definition 6 says that if A has an instance xIA with an interpretation I, then there are
three instances xIB , x

I
C , x

I
D in BI , CI , DI , respectively, such that 〈xIA, xIB〉 ∈ X1

1
I ,

〈xIA, xIC〉 ∈ Y 1
1
I and 〈xIA, xID〉 ∈ εADI . These instances are distinct since A,B,C,D

are disjoint by axioms 10, 11, 12 and 13. In addition, by axioms 11, 12, there are
x′ID , x

′′I
D ∈ DI such that 〈xIB , x′ID 〉 ∈ Y 1

2
I , 〈xIC , x′′ID 〉 ∈ X1

2
I . This is depicted in

Figure 5.
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Fig. 4. The grid illustrates a model of the concept A w.r.t the axioms

Since P 11
12 subsumesX1

1 , Y
1
2 by axiom 1, we have 〈xIA, x′ID 〉 ∈ (P 11

12
+
)
I

. Moreover,

since P 11
12 is functional by axiom 5, 〈xIA, xID〉 ∈ (P 11

12
+
)
I

by axiom 3, and εADI ⊆
(P 11

12
+
)
I

by axiom 3, there are two possibilities: (i) xID = x′ID , and (ii) there is yI such
that 〈x′ID , yI〉 ∈ (P 11

12 )
I . This contradicts axiom 13. Therefore, xID = x′ID . Similarly,

we can get xID = x′′ID . By this way, the axioms in Definition 6 can yield a grid as in
Figure 5 if concept A is satisfiable.

Definition 6. Let D = (D,H,V) be a domino system with D = {D1, · · · , Dl}. Let
NC and NR be sets of concept and role names such that NC = {A,B,C,D} ∪
D, NR = {Xi

j | i, j ∈ {1, 2}} ∪ {X,Y } ∪ {P ijrs | i, j, r, s ∈ {1, 2}, r 6= s} ∪
{εAD, εDA, εBC , εCB}

Role hierarchy:

1. Xi
r v P ijrs, Y js v P ijrs for all i, j, r, s ∈ {1, 2}, r 6= s,

2. Xi
r v X,Y ir v Y for all i, r ∈ {1, 2},

3. εADvP 11
12

+
, εAD v P 11

21
+,εDA v P 22

12
+
, εDA v P 22

21
+,

4. εBCvP 21
21

+
, εBC v P 21

12
+, εCB v P 12

21
+
, εCB v P 12

12
+,

Concept inclusion axioms:
5. > v≤1P ijrs for all i, j, r, s ∈ {1, 2}, r 6= s,
6. > v ≤ 1X,> v ≤ 1Y ,
7. >v≤ 1εAD, >v≤ 1εDA, >v≤ 1εBC , >v≤ 1εCB ,
8. > v

⊔
1≤i≤l

(Di u (
l

1≤j≤l,j 6=i

¬Dj)),

9. Di v ∀X.
⊔

(Di,Dj)∈H

Dj u ∀Y.
⊔

(Di,Dk)∈V

Dk for each Di ∈ D,



10. A v ¬B u ¬C u ¬D u ∃X1
1 .B u ∃Y 1

1 .C u ∃εAD.D u ∀P 22
12 .⊥ u ∀P 22

21 .⊥,
11. B v ¬A u ¬C u ¬D u ∃X2

2 .A u ∃Y 1
2 .D u ∃εBC .C u ∀P 12

21 .⊥ u ∀P 12
12 .⊥,

12. C v ¬A u ¬B u ¬D u ∃X1
2 .D u ∃Y 2

2 .A u ∃εCB .B u ∀P 21
21 .⊥ u ∀P 21

12 .⊥,
13. D v ¬A u ¬B u ¬C u ∃X2

1 .C u ∃Y 2
1 .B u ∃εDA.A u ∀P 11

12 .⊥ u ∀P 11
21 .⊥.
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Fig. 5. How each square can be formed from a diagonal represented by an ε

Theorem 2 (Undecidability of SHIN+). The concept A is satisfiable w.r.t. concept
and role inclusion axioms in Definition 6 iff there is a compatible tiling t of the first
quadrant N× N for a given domino system D = (D,H,V).

A proof of Theorem 2 can be found in Appendix.

5 Conclusion and Discussion

In this paper, we have presented a tableaux-based decision procedure for SHIQ+ con-
cept satisfiability. In order to define tableaux for SHIQ+ we introduces new prop-
erties that allow us to represent semantic constraints imposed by transitive closure of
roles and to avoid expressing explicitly cycles for role inclusion axioms with transitive
closure. These new tableaux properties are translated into new non-deterministic ex-
pansion rules which make the complexity of the tableaux-based algorithm jump from
exponential for SHIQ to double exponential for SHIQ+. An open issue consists in
investigating whether this complexity is worst-case optimal. To the best of our knowl-
edge, this problem has not addressed yet. Another future work concerns the extension
of our tableaux-based algorithm to SHIQ+ with nominals.
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Appendix

Theorem (2) [Undecidability of SHIN+] The concept A is satisfiable iff there is
a compatible tiling t of the first quadrant N × N for a given domino system D =
(D,H,V).

Proof of Theorem 2
• ”If-direction”. Assume that there is a compatible tiling t for D = (D,H,V). This
tiling is used to define an interpretation I = 〈∆I , .I〉 of the concept A w.r.t. the axioms
in Definition 6. Without loss of the generality, we assume that t(0, 0) = A. Moreover,
each a(m,n) is denoted for each point (m,n) of the first quadrant N× N. The figure 1.
illustrates the interpretation that we expect.

1. ∆I = {a(m,n) | m,n ∈ N}



2. (X1
1 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}

3. (X2
2 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}

4. (X1
2 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}

5. (X2
1 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}

6. (Y 1
1 )
I = {〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}

7. (Y 2
2 )
I = {〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}

8. (Y 1
2 )
I = {〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}

9. (Y 2
1 )
I = {〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}

10. (P 11
12 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}
11. (P 11

21 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}
12. (P 22

12 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}
13. (P 22

21 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}
14. (P 21

21 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}
15. (P 21

12 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}
16. (P 12

21 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}
17. (P 12

12 )
I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}∪

{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}
18. (εAD)

I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}
19. (εDA)

I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}
20. (εBC)

I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}
21. (εBC)

I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}
22. Di

I = {a(k,l) | t(k, l) = Di} for each Di ∈ D
23. AI = {a(k,l) | (k mod 2 = 0) ∧ (l mod 2 = 0)}
24. DI = {a(k,l) | (k mod 2 = 1) ∧ (l mod 2 = 1)}
25. BI = {a(k,l) | (k mod 2 = 1) ∧ (l mod 2 = 0)}
26. CI = {a(k,l) | (k mod 2 = 0) ∧ (l mod 2 = 1)}
27. XI = X1

1
I ∪X1

2
I ∪X2

1
I ∪X2

2
I

28. Y I = Y 1
1
I ∪ Y 1

2
I ∪ Y 2

1
I ∪ Y 2

2
I

We now check that I satisfies all axioms in Definition 6.

1. Xi
r v P ijrs, Y js v P ijrs for all i, j, r, s ∈ {1, 2}, r 6= s.

For each k, l ≥ 0, we consider the following cases:
– Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the assertions 2, 6, we have
〈a(k,l), a(k+1,l)〉 ∈ X1

1
I , and 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I . From the assertions 10,

11 we have 〈a(k,l), a(k+1,l)〉 ∈ P 11
12
I and 〈a(k,l), a(k,l+1)〉 ∈ P 11

21
I .

– Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
– Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
– Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.



2. Xi
r v X,Y ir v Y for all i, r ∈ {1, 2}. From assertions 27 and 28.

3. εAD v (P 11
12 )

+, εAD v (P 11
21 )

+.
For each k, l ≥ 0, we consider the following cases:

– Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the assertion 18, we have
〈a(k,l), a(k+1,l+1)〉 ∈ εADI . From the assertions 2 and 8 it follows that 〈a(k,l), a(k+1,l)〉 ∈
X1

1
I , 〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 1

2
I (note that (k+1mod 2 = 1)). By the asser-

tion 10 we have 〈a(k,l), a(k+1,l)〉 ∈ P 11
12
I and 〈a(k+1,l), a(k+1,l+1)〉 ∈ P 11

12
I .

This implies that 〈a(k,l), a(k+1,l+1)〉 ∈ (P 11
12 )

+I .
On the other hand, from the assertions 6 and 4 we have 〈a(k,l), a(k,l+1)〉 ∈
Y 1
1
I , 〈a(k,l+1), a(k+1,l+1)〉 ∈ X1

2
I (note that (l + 1 mod 2 = 1)). By the

assertion 11 we have 〈a(k,l), a(k,l+1)〉 ∈ P 11
21
I , 〈a(k,l+1), a(k+1,l+1)〉 ∈ P 11

21
I .

This implies that 〈a(k,l), a(k+1,l+1)〉 ∈ (P 11
21 )

+I .
– Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
– Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
– Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

4. εDA v (P 22
12 )

+, εDA v (P 22
21 )

+. Similarly.
5. εBC v (P 21

21 )
+, εBC v (P 21

12 )
+. Similarly.

6. εCB v (P 12
21 )

+, εCB v (P 12
12 )

+. Similarly.
7. > v ≤ 1P ijr,s for all i, j, r, s ∈ {1, 2}, r 6= s.

For each k, l ≥ 0, we consider the following cases:
– Assume (k mod 2 = 0)∧ (l mod 2 = 0). From the assertions 10, 11, 14, 17 we

have 〈a(k,l), a(k+1,l)〉 ∈ P 11
12
I , 〈a(k,l), a(k,l+1)〉 ∈ P 11

21
I , 〈a(k,l), a(k,l+1)〉 ∈

P 21
21
I and 〈a(k,l), a(k+1,l)〉 ∈ P 12

12
I .

– Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
– Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
– Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

8. > v ≤ 1X,> v ≤ 1Y .
For each k, l ≥ 0, we consider the following cases:

– Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the assertions 2, 6 we have
〈a(k,l), a(k+1,l)〉 ∈ X1

1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I . From the assertion 28, we

have 〈a(k,l), a(k+1,l)〉 ∈ XI , 〈a(k,l), a(k,l+1)〉 ∈ Y I .
– Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
– Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
– Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

9. > v ≤ 1εAD. It is obvious from the assertion 18 for each k, l ≥ 0.
10. > v ≤ 1εDA. It is obvious from the assertion 19 for each k, l ≥ 0.
11. > v ≤ 1εBC . It is obvious from the assertion 20 for each k, l ≥ 0.
12. > v ≤ 1εCB . It is obvious from the assertion 21 for each k, l ≥ 0.
13. > v

⊔
1≤i≤l

(Di u (
l

1≤j≤l,j 6=i

¬Dj)). Since t is a tiling, each (k, l) has a unique

Di ∈ D such that t(k, l) = Di. Thus, from the assertion 22, each a(k,l) has a
unique Di ∈ D such that a(k,l) ∈ Di

I .



14. Di v ∀X.
⊔

(Di,Dj)∈H

Dj u ∀Y.
⊔

(Di,Dk)∈V

Dk for each Di ∈ D.

From the assertion 22, if a(k,l) ∈ Di
I then t(k, l) = Di. Since t is a tiling, accord-

ing to Definition 5 we have 〈Di, Dj〉 ∈ H and 〈Di, Dk〉 ∈ V with t(k+1, l) = Dj

and t(k, l + 1) = Dk. From the assertions 28 and 2-9 we have 〈a(k,l), a(k+1,l)〉 ∈
XI and 〈a(k,l), a(k,l+1)〉 ∈ Y I . From the assertion 22, we have a(k+1,l) ∈ Dj

I

and a(k,l+1) ∈ Dk
I .

15. A v ¬B u ¬C u ¬D u ∃X1
1 .B u ∃Y 1

1 .C u ∃εAD.D u ∀P 22
12 .⊥ u ∀P 22

21 .⊥.
For each k, l ≥ 0, we consider the following cases:

– Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the assertions 23 we have
a(k,l) ∈ AI . From the assertions 24, 25, 26, we have a(k,l) /∈ BI , a(k,l) /∈
CI , a(k,l) /∈ DI . Moreover, from the assertions 2, 6 we have 〈a(k,l), a(k+1,l)〉 ∈
X1

1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I . By the assertions 18 and 24 we have 〈a(k,l), a(k+1,l+1)〉 ∈

εAD
I and a(k+1,l+1) ∈ DI .

Additionally, according to the assertions 12, 13, 〈a(k,l), a(k+1,l)〉, 〈a(k,l), a(k,l+1)〉 /∈
P 11
12
I and 〈a(k,l), a(k+1,l)〉, 〈a(k,l), a(k,l+1)〉 /∈ P 11

21
I .

– Assume (k mod 2 = 1) ∧ (l mod 2 = 0). From the assertion 23, it follows
a(k,l) /∈ AI .

– Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
– Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

16. B v ¬Au¬Cu¬Du∃X2
2 .Au∃Y 1

2 .Du∃εBC .Cu∀P 12
21 .⊥u∀P 12

12 .⊥. Similarly.
17. C v ¬Au¬Bu¬Du∃X1

2 .Du∃Y 2
2 .Au∃εCB .Bu∀P 21

21 .⊥u∀P 21
12 .⊥. Similarly.

18. D v ¬Au¬Bu¬Cu∃X2
1 .Cu∃Y 2

1 .Bu∃εDA.Au∀P 11
12 .⊥u∀P 11

21 .⊥. Similarly.

• ”Only-If-direction”. On the other hand, assume that the concept A is satisfiable w.r.t.
the axioms in Definition 6 , and let I = 〈∆I , .I〉 be an interpretation such that AI 6= ∅.
Assume that a(0,0) ∈ AI . This interpretation can be used to find a compatible tiling for
D.

First, we show the following claim:

Claim. There are individuals a(k,l) ∈ ∆I with k, l ≥ 0 such that

– If (k mod 2 = 0) ∧ (l mod 2 = 0) then a(k,l) ∈ AI . Additionally, there are
a(k+1,l) ∈ BI , a(k,l+1) ∈ CI , a(k+1,l+1) ∈ DI such that 〈a(k,l), a(k+1,l)〉 ∈ X1

1
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 1
2
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I and 〈a(k,l+1), a(k+1,l+1)〉 ∈

X1
2
I .

– If (k mod 2 = 1) ∧ (l mod 2 = 1) then a(k,l) ∈ DI . Additionally, there are
a(k+1,l) ∈ CI , a(k,l+1) ∈ BI , a(k+1,l+1) ∈ AI such that 〈a(k,l), a(k+1,l)〉 ∈ X2

1
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 2
2
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 2

1
I and 〈a(k,l+1), a(k+1,l+1)〉 ∈

X2
2
I .

– If (k mod 2 = 1) ∧ (l mod 2 = 0) then a(k,l) ∈ BI . Additionally, there are
a(k+1,l) ∈ AI , a(k,l+1) ∈ DI , a(k+1,l+1) ∈ CI such that 〈a(k,l), a(k+1,l)〉 ∈ X2

2
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 1
1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

2
I and 〈a(k,l+1), a(k+1,l+1)〉 ∈

X2
1
I .



– If (k mod 2 = 0) ∧ (l mod 2 = 1) then a(k,l) ∈ CI . Additionally, there are
a(k+1,l) ∈ DI , a(k,l+1) ∈ AI , a(k+1,l+1) ∈ BI such that 〈a(k,l), a(k+1,l)〉 ∈ X1

2
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 2
1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 2

2
I and 〈a(k,l+1), a(k+1,l+1)〉 ∈

X1
1
I .

Proof (Proof of the claim 5).

– Assume k = 0, l = 0. We have a(0,0) ∈ AI . By the axiom 10 in Definition 6 there
are a(1,0) ∈ BI , a(0,1) ∈ CI such that 〈a(0,0), a(1,0)〉 ∈ X1

1
I , 〈a(0,0), a(0,1)〉 ∈

Y 1
1
I . Moreover, by the axioms 11, 12 in Definition 6 there are a(1,1), a′(1,1) ∈ D

I

such that 〈a(1,0), a(1,1)〉 ∈ Y 1
2
I , 〈a(0,1), a′(1,1)〉 ∈ X1

2
I . We show that a′(1,1) =

a(1,1).
By the axiom 10 in Definition 6, let a ∈ DI such that 〈a(0,0), a〉 ∈ εIAD. From
the axiom 1 in Definition 6 we have 〈a(0,0), a(1,0)〉, 〈a(1,0), a(1,1)〉 ∈ P 11

12
I . If

a(1,1) 6= a then, by the axioms 3, 5 in Definition 6 there is an instance a′ such that
〈a(1,1), a′〉 ∈ P 11

12
I , which contradicts the axiom 13 in Definition 6 since a(1,1) ∈

DI and 〈a(1,1), a′〉 ∈ P 11
12
I . Thus, a(1,1) = a. Analogously, from the axiom 1 in

Definition 6 we have 〈a(0,0), a(0,1)〉, 〈a(0,1), a′(1,1)〉 ∈ P
11
21
I . If a′(1,1) 6= a then, by

the axioms 3, 5 in Definition 6 there is an instance a′′ such that 〈a′(1,1), a
′′〉 ∈ P 11

21
I ,

which contradicts the axiom 13 in Definition 6 since a′(1,1) ∈ D
I and 〈a′(1,1), a

′′〉 ∈
P 11
21
I . Therefore, a′(1,1) = a, and thus a(1,1) = a′(1,1).

– Assume that k ≥ 0 or l ≥ 0. We consider the following cases:
• Assume a(k,l) ∈ AI with (k mod 2 = 0) ∧ (l mod 2 = 0). By the ax-

iom 10 in Definition 6 there are a(k+1,l) ∈ BI , a(k,l+1) ∈ CI such that
〈a(k,l), a(k+1,l)〉 ∈ X1

1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I . Moreover, by the axioms 11,

12 in Definition 6 there are a(k+1,l+1), a
′
(k+1,l+1) ∈ D

I such that 〈a(k+1,l), a(k+1,l+1)〉 ∈
Y 1
2
I , 〈a(k,l+1), a

′
(k+1,l+1)〉 ∈ X

1
2
I . We show that a′(k+1,l+1) = a(k+1,l+1).

By the axiom 10 in Definition 6, let a ∈ DI such that 〈a(k,l), a〉 ∈ εIAD. From
the axiom 1 in Definition 6 we have 〈a(k,l), a(k+1,l)〉, 〈a(k+1,l), a(k+1,l+1)〉 ∈
P 11
12
I . If a(k+1,l+1) 6= a then, by the axioms 3, 5 in Definition 6 there is

an instance a′ such that 〈a(k+1,l+1), a
′〉 ∈ P 11

12
I , which contradicts the ax-

iom 13 in Definition 6 since a(k+1,l+1) ∈ DI and 〈a(k+1,l+1), a
′〉 ∈ P 11

12
I .

Thus, a(k+1,l+1) = a. Analogously, from the axiom 1 in Definition 6 we have
〈a(k,l), a(k,l+1)〉, 〈a(k,l+1), a

′
(k+1,l+1)〉 ∈ P

11
21
I . If a′(k+1,l+1) 6= a then, by the

axioms 3, 5 in Definition 6 there is an instance a′′ such that 〈a′(k+1,l+1), a
′′〉 ∈

P 11
21
I , which contradicts the axiom 13 in Definition 6 since a′(k+1,l+1) ∈ D

I

and 〈a′(k+1,l+1), a
′′〉 ∈ P 11

21
I . Therefore, a′(k+1,l+1) = a, and thus a(k+1,l+1) =

a′(k+1,l+1).
Obviously, if (k mod 2 = 0) and (l mod 2 = 0) then ((k+1)mod 2 = 1) and
((l + 1) mod 2 = 1)



• Assume a(k,l) ∈ DI with (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.
• Assume a(k,l) ∈ BI with (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
• Assume a(k,l) ∈ CI with (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly. �

We now define a mapping t : N× N→ D as follows. By the axiom 8 in Definition
6, there is Di ∈ D such that a(0,0) ∈ Di

I .

1. t(0, 0) := Di with a(0,0) ∈ Di
I . From the axioms 9, 2, 6 in Definition 6 and Claim

5, there are D(0,0)
x , D

(0,0)
y ∈ D such that (Di, Dx) ∈ H, (Di, D

(0,0)
y ) ∈ V , and

〈a(0,0), a(1,0)〉 ∈ XI with a(1,0) ∈ D
(0,0)
x

I
, 〈a(0,0), a(0,1)〉 ∈ Y I with a(0,1) ∈

D
(0,0)
y

I
. Therefore, we define t(1, 0) := D

(0,0)
x , t(0, 1) := D

(0,0)
y . Since X,Y

are functional and Dh are disjoint for all Dh ∈ D hence such D(0,0)
x , D

(0,0)
y are

uniquely determined from Di.
Moreover, from the axiom 9, 2, 6 in Definition 6, there are D(1,0)

y , D
(0,1)
x ∈ D

such that (D(0,0)
x , D

(1,0)
y ) ∈ H, (D(0,0)

y , D
(0,1)
x ) ∈ V , and 〈a(1,0), a(1,1)〉 ∈ Y I

with a(1,1) ∈ D
(1,0)
y

I
, 〈a(0,1), a′(1,1)〉 ∈ X

I with a′(1,1) ∈ D
(0,1)
x

I
. By the axioms

11, 12, 2, 6 in Definition 6 we have 〈a(1,0), a(1,1)〉 ∈ Y 1
2
I , 〈a(0,1), a′(1,1)〉 ∈ X

1
2
I .

From Claim 5 we have a(1,1) = a′(1,1). This implies that D(1,0)
y = D

(0,1)
x since

D
(1,0)
y , D

(0,1)
x are disjoint by the axiom 8 in Definition 6. Therefore we can define

t(1, 1) := D
(1,0)
y = D

(0,1)
x .

2. Assume that t(i, j) := Di′ with a(i, j) ∈ Di′
I . From the axiom 9, 2, 6 in Def-

inition 6 and Claim 5, there are D(i,j)
x , D

(i,j)
y ∈ D such that (D(i,j)

x , D
(i,j)
y ) ∈

H, (D(i,j)
x , D

(i,j)
y ) ∈ V , and 〈a(i,j), a(i+1,j)〉 ∈ XI with a(i+1,j) ∈ D

(i,j)
x

I
,

〈a(i,j), a(i,j+1)〉 ∈ Y I with a(i,j+1) ∈ D
(i,j)
y

I
. Therefore, t(i+1, j) := D

(i,j)
x , t(i, j+

1) := D
(i,j)
y . Since X,Y are functional and Dh are disjoint for all Dh ∈ D hence

such D(i,j)
x , D

(i,j)
y are uniquely determined from Di′ .

Moreover, from the axiom 9, 2, 6 in Definition 6, there are D(i+1,j)
y , D

(i,j+1)
x ∈ D

such that (D(i,j)
x , D

(i+1,j)
y ) ∈ H, (D(i,j)

y , D
(i,j+1)
x ) ∈ V , and 〈a(i+1,j), a(i+1,j+1)〉 ∈

Y I with a(i+1,j+1) ∈ D
(i+1,j)
y

I
, 〈a(i,j+1), a

′
(i+1,j+1)〉 ∈ XI with a′(i+1,j+1) ∈

D
(i,j+1)
x

I
. We now distinguish the following cases:

(a) Assume that a(i,j) ∈ AI . From Claim 5 and the axiom 8 in Definition 6 we
can show D

(i+1,j)
y = D

(i,j+1)
x . Therefore we can define t(i + 1, j + 1) :=

D
(i+1,j)
y = D

(i,j+1)
x .

(b) Assume that a(i,j) ∈ BI . Similarly.
(c) Assume that a(i,j) ∈ CI . Similarly.
(d) Assume that a(i,j) ∈ DI . Similarly.

It remains to be shown that (1) t is well defined, (2) the horizontal and vertical
matching conditions are satisfied.

(1) is obvious from the construction of the mapping t.



(2) From the definition of t, for each a(k,l) there is a Di ∈ D such that t(k, l) = Di

and a(k,l) ∈ Di
I . Again, by the construction of t, there are Dj , Dk ∈ D such that

t(k + 1, l) = Dj , t(k, l + 1) = Dj and a(k+1,l) ∈ Dj
I , a(k,l+1) ∈ Dk

I . By the
axioms 2 and 9, we have 〈Di, Dj〉 ∈ H and 〈Di, Dk〉 ∈ V .


