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Abstract

This paper investigates Description Logics which al-
low transitive closure of roles to occur not only in con-
cept inclusion axioms but also in role inclusion axioms.
First, we propose a decision procedure for the descrip-
tion logic SHIO+, which is obtained from SHIO
by adding transitive closure of roles. Next, we show
that SHIO+ has the finite model property by provid-
ing a upper bound on the size of models of satisfiable
SHIO+-concepts with respect to sets of concept and
role inclusion axioms. Additionally, we prove that if we
add number restrictions to SHI+ then the satisfiability
problem is undecidable.

Introduction
The ontology language OWL-DL (Patel-Schneider, Hayes,
and Horrocks 2004) is widely used to formalize resources
on the Semantic Web. This language is mainly based on
the description logic SHOIN which is known to be decid-
able (Tobies 2000). Although SHOIN is expressive and
provides transitive roles to model transitivity of relations,
we can find several applications in which the transitive clo-
sure of roles, that is more expressive than transitive roles, is
necessary. An example in (Sattler 2001) describes two cat-
egories of devices as follows: (1) Devices have as their di-
rect part a battery: Device u ∃hasPart.Battery, (2) Devices
have at some level of decomposition a battery: Device u
∃hasPart+.Battery. However, if we now define hasPart as
a transitive role, the concept Deviceu∃hasPart.Battery does
not represent the devices as described above since it does not
allow one to describe these categories of devices as two dif-
ferent sets of devices. We now consider another example in
which we need to use the transitive closure of roles in role
inclusion axioms.

Example 1 A process accepts a set S of possible states
where start ∈ S is the initial state. The process can reach
two disjoint phases A,B ⊆ S, considered as two sets of
states. To go from a state to another one, the process has
to perform an action a or b. Sometimes, it can execute a
jump that implies a sequence of actions next.
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To specify the behavior of the process as described, we
might need a role name next to express the fact that a state
follows another one, a nominal o for start, a role name jump
for jumps, concept names A,B for the phases and the follow-
ing axioms:

(1) o v ¬A u ¬B, A u B v ⊥, o v ∀next−.⊥
(2) > v ∃next.>, jump v next+

Since jumps are arbitrarily executed over S and they form
(non-directed) cycles with next instances, we cannot use
concept axioms to express them. In addition, if a transitive
role is used instead of transitive closure, we cannot express
the property : an execution of jump implies a sequence of
actions next. Therefore, the axiom jump v next+ is neces-
sary.

Example 2 We now restrict the behavior of the process in
Example 1 by providing two more properties: (i) each state
has at most one predecessor and successor state; (ii) the
process starts from start and if it reaches a state in B then
it has already got through a state in A. In order to take into
account the new properties, we need to add the following
axioms:

(3) > v≤ 1 next.>, > v≤ 1 next−.>, B v ∃jump−.A
Assume that I is a model of the nominal o w.r.t.
the axioms. From the axioms in (1), Example 1,
there is a sequence of states oI , sI1 , · · · , sIn such that
〈oI , sI1 〉, · · · , 〈sIi , sIi+1〉 ∈ nextI for all i ∈ {1, · · · , n−1}.
If sIn ∈ BI then, by the axioms in (2), Example 1, and the
last one in (3) there are tI1 , · · · , tIm with tIm = sIn, tI1 ∈ AI

such that 〈tiI , tIi+1〉 ∈ nextI for all i ∈ {1, · · · ,m − 1}.
Due to the axioms related number restrictions in (3) and
o v ∀next−.⊥, we have m ≤ n and tIm−i = sIn−i for all
i ∈ {1, · · · ,m− 1}.

Such examples motivate the study of Description Logics
(DL) that allow the transitive closure of roles to occur in
both concept and role inclusion axioms. We introduce in
this work a DL that can express the process as described in
Example 1 and propose a decision procedure for concept sat-
isfiability problem in this DL. In addition, a more expressive
DL that can capture the process in Example 2 is also defined.
Unfortunately, we show that this DL is undecidable.

To the best of our knowledge, the decidability of
SHIO+, which is obtained from SHIO by adding tran-
sitive closure of roles, is unknown. (Leduc 2009) has es-



tablished a decision procedure for concept satisfiability in
SHI+ (SHIO+ without nominal) by using neighborhoods
to build completion graphs. In the literature, many decid-
ability results in DLs can be obtained from their counterparts
in modal logics ((Giacomo and Lenzerini. 1994), (Giacomo
and Lenzerini 1995)). However, these counterparts do not
take into account expressive role inclusion axioms. In par-
ticular, (Giacomo and Lenzerini 1995) has shown the decid-
ability of a very expressive DL, so-called CAT S, including
SHIQ with the transitive closure of roles but not allowing
it to occur in role inclusion axioms. (Giacomo and Lenz-
erini 1995) has pointed out that the complexity of concept
subsumption in CAT S is EXPTIME-complete by translat-
ing CAT S into the logic Converse PDL in which inference
problems are well studied.

Recently, there have been some works in (Horrocks and
Sattler 2004) and (Horrocks, Kutz, and Sattler 2006) which
have attempted to augment the expressiveness of role in-
clusion axioms. A decidable logic, namely SROIQ, re-
sulting from these efforts allows for new role constructors
such as composition, disjointness and negation. In addition,
(Ortiz 2008) has introduced a DL, so-called ALCQIb+reg,
which can capture SRIQ (SROIQ without nominal), and
obtained the worst-case complexity (EXPTIME-complete)
of the satisfiability problem by using automata-based tech-
nique. ALCQIb+reg allows for a rich set of operators on
roles by which one can simulate role inclusion axioms.
However, transitive closures in role inclusion axioms are ex-
pressible neither in SROIQ nor in ALCQIb+reg.

In addition, tableaux-based algorithms for expressive
DLs like SHIQ (Horrocks, Sattler, and Tobies 1999) and
SHOIQ (Horrocks and Sattler 2007) result in efficient im-
plementations. This kind of algorithms relies on two struc-
tures, the so-called tableau and completion graph. Roughly
speaking, a tableau for a concept represents a model for the
concept and it is possibly infinite. A tableau translates satis-
fiability of all given concept and role inclusion axioms into
the satisfiability of semantic constraints imposed locally on
each individual of the tableau. This feature of tableaux will
be called local satisfiability property. In turn, a completion
graph for a concept is a finite representation from which a
tableau can be built. The algorithm in (Baader 1991) for
satisfiability in ALCreg (including the transitive closure of
roles and other role operators) introduced a method to deal
with loops which can hide unsatisfiable nodes.

Regarding undecidability results, (Horrocks, Kutz, and
Sattler 2006) has shown that an arbitrary extension of role
inclusion axioms, such as adding R ◦ S v P , may lead to
undecidability. Additionally, as it turned out by (Horrocks,
Sattler, and Tobies 1999), the interaction between transi-
tive roles and number restrictions causes also undecidability.
The technique used to prove these undecidability results is
to reduce the domino problem, which is known to be unde-
cidable (Berger 1966), to the problem in question.

The contribution of the present paper consists of (i) prov-
ing that SHIO+ has the finite model property, and so is de-
cidable by providing an upper bound on the size of models
of satisfiable SHIO+-concepts with respect to (w.r.t.) sets
of concept and role inclusion axioms, (iii) establishing a re-

duction of the domino problem to the concept satisfiability
problem in the logic SHIN+ that is obtained from SHI+

by adding number restrictions on simple roles i.e. roles do
not subsume any transitive role. This reduction shows that
SHIN+ is undecidable.

The Description Logic SHIO+

The logic SHIO+ is an extension of SHIO by allowing
for transitive closure of roles. In this section, we present the
syntax and semantics of SHIO+. This includes the defi-
nitions of inference problems and how they are interrelated.
The definitions reuse notation introduced in (Horrocks and
Sattler 2007).

Definition 1 Let R be a non-empty set of role names. We
denote RI = {P− | P ∈ R}, R+ = {Q+ | Q ∈ R ∪RI}.
∗ The set of SHIO+-roles is R∪RI∪R+. A role inclusion
axiom is of the form R v S for two SHIO+-roles R and
S. A role hierarchyR is a finite set of role inclusion axioms.
∗ An interpretation I = (∆I , ·I) consists of a non-empty set
∆I (domain) and a function ·I which maps each role name
to a subset of ∆I × ∆I such that, for R ∈ R′, S ∈ RT,
Q ∈ R′ ∪RI,
R−
I = {〈x, y〉 ∈ (∆I)2 | 〈y, x〉 ∈ RI}, and

Q+I =
⋃
n>0

(Qn)I with (Q1)I = QI ,

(Qn)I = {〈x, y〉 ∈ (∆I)2 | ∃z ∈ ∆I , 〈x, z〉 ∈
(Qn−1)I , 〈z, y〉 ∈ QI}.

An interpretation I satisfies a role hierarchy R if RI ⊆ SI

for each R v S ∈ R. Such an interpretation is called a
model ofR, denoted by I |= R.
∗ Function Inv returns the inverse of a role as follows:

Inv(R):=


R− if R ∈ R,
S if R = S− where S ∈ R,
(Q−)+ if R = Q+ where Q ∈ R,
Q+ if R = (Q−)+ where Q ∈ R

∗ A relation ∗v is defined as the transitive-reflexive closure
of v on R ∪ {Inv(R) v Inv(S) | R v S ∈ R} ∪ {Q v
Q+ | Q ∈ R ∪RI}. We denote S ≡ R iff R∗vS and S ∗vR.
We may abuse the notation by saying R∗vS ∈ R.

Notice that we introduce into role hierarchies axioms Q v
Q+ which allows us (i) to propagate (∀Q+.A) correctly, and
(ii) to take into account the fact that R v S implies R+ v
S+.

Definition 2 Let C′ = C ∪Co be a non-empty set of con-
cept names where C is a set of normal concept names and
Co is a set of nominals.
∗ The set of SHIO+-concepts is inductively defined as the
smallest set containing all C in C′, >, C uD, C tD, ¬C,
∃R.C, ∀R.C where C and D are SHIO+-concepts, R is
an SHIO+-role, S is a simple role and n ∈ N. We denote
⊥ for ¬>.
∗ An interpretation I = (∆I , ·I) consists of a non-empty
set ∆I (domain) and a function ·I which maps each concept
name to a subset of ∆I such that card{oI} = 1 for all o ∈
Co where card{·} is denoted for the cardinality of a set {·},



>I = ∆I , (C uD)I = CI ∩DI , (C tD)I = CI ∪DI ,
(¬C)I = ∆I\CI ,
(∃R.C)I = {x ∈ ∆I | ∃y ∈ ∆I , 〈x, y〉 ∈ RI ∧ y ∈ CI},
(∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I , 〈x, y〉 ∈ RI ⇒ y ∈ CI}
∗ C v D is called a general concept inclusion (GCI) where
C,D are SHIO+-concepts (possibly complex), and a finite
set of GCIs is called a terminology T . An interpretation I
satisfies a GCI C v D if CI ⊆ DI and I satisfies a termi-
nology T if I satisfies each GCI in T . Such an interpretation
is called a model of T , denoted by I |= T .
∗ A concept C is called satisfiable w.r.t. a role hierarchy R
and a terminology T iff there is some interpretation I such
that I |= R, I |= T and CI 6= ∅. Such an interpretation is
called a model of C w.r.t. R and T . A pair (T ,R) is called
an SHIO+ ontology and said to be consistent if there is a
model of (T ,R).
∗ A concept D subsumes a concept C w.r.t. R and T , de-
noted by C v D, if CI ⊆ DI holds in each model I of
(T ,R).

Notice that a transitive role S (i.e. 〈x, y〉 ∈ SI , 〈y, z〉 ∈
SI implies 〈x, z〉 ∈ SI where I is an interpretation) can be
expressed by using a role axiom S+ v S. Since negation is
allowed in the logic SHIO+, unsatisfiability and subsump-
tion w.r.t. (T ,R) can be reduced each other: C v D iff
C u ¬D is unsatisfiable. In addition, we can reduce ontol-
ogy consistency to concept satisfiability w.r.t. an ontology:
(T ,R) is consistent ifAt¬A is satisfiable w.r.t. (T ,R) for
some concept name A.

For the ease of construction, we assume all concepts to be
in negation normal form (NNF) i.e. negation occurs only in
front of concept names. Any SHIO+-concept can be trans-
formed to an equivalent one in NNF by using DeMorgan’s
laws and some equivalences as presented in (Horrocks, Sat-
tler, and Tobies 1999). For a concept C, we denote the nnf
of C by nnf(C) and the nnf of ¬C by .¬C.

LetD be an SHIO+-concept in NNF. We define sub(D)
to be the smallest set that contains all sub-concepts of D
including D. For an ontology (T ,R), we define the set of
all sub-concepts sub(T ,R) as follows:

sub(T ,R) :=
⋃

CvD∈T

sub(nnf(¬C tD),R)

sub(E,R) := sub(E) ∪ { .¬C | ¬C ∈ sub(E)} ∪
{∀S.C | (∀R.C ∈ sub(E), S ∗vR)∨
( .¬∀R.C ∈ sub(E), S ∗vR)

and S occurs in T orR}
For the sake of simplicity, for each concept D w.r.t. (T ,R)
we denote sub(T ,R, D) for sub(T ,R) ∪ sub(D), and
R(T ,R,D) for the set of roles occurring in T ,R, D, their
inverse and transitive closure. If it is clear from the context
we will use R instead of R(T ,R,D).

A decision procedure for SHIO+

In this section, we establish decidability of SHIO+ by
devising a terminating, sound and complete algorithm for
checking the satisfiability of SHIO+ concepts w.r.t. a ter-
minology and role hierarchy.

In our approach, we define a sub-structure of graphs,
called neighborhood, which consists of a node together with
its neighbors. Such a neighborhood captures all semantic
constraints imposed by the logic constructors of SHIO. A
graph obtained by “tiling” neighborhoods together allows us
to represent in some way a model for a concept in SHIO+.
In fact, we embed in this graph another structure, called
cyclic path, to express transitive closure of roles. Since all
expansion rules for SHIO can be translated into construc-
tion of neighborhoods, the algorithm presented in this paper
focuses on defining cyclic paths over such a graph. By this
way, the non-determinism resulting from satisfying the tran-
sitive closure of roles can be translated into the search in a
space of all possible graphs obtained from tiling neighbor-
hoods.

Neighborhood for SHIO+

Tableau-based algorithms, as presented in (Horrocks and
Sattler 2007), use expansion rules representing tableau prop-
erties to build a completion graph. Applying expansion rules
makes all nodes of a completion graph satisfy semantic con-
straints imposed by concept definitions in the label associ-
ated with each node. This means that local satisfiability in
such completion graphs is sufficient to ensure global satis-
fiability. The notion of neighborhood introduced in Defi-
nition 3 expresses exactly the expansion rules for SHIO,
consequently, guarantees local satisfiability. Therefore, a
completion graph built by a tableau-based algorithm can be
considered as set of neighborhoods which are tiled together.
In other terms, building a completion tree by applying ex-
pansion rules is equivalent to the search of a tiling of neigh-
borhoods.

Definition 3 (Neighborhood) Let D be an SHIO+ con-
cept with a terminology T and role hierarchy R. Let R be
the set of roles occurring in D and T ,R together with their
inverse. A neighborhood, denoted (vB , NB , l), for D w.r.t.
(T ,R) is formed from a core node vB , a set of neighbor
nodes NB , edges 〈vB , v〉 with v ∈ NB and a labelling func-
tion l such that l(u) ∈ 2sub(T ,R,D) with u ∈ {vB} ∪ NB

and l〈vB , v〉 ∈ 2R with v ∈ NB .

1. A node v ∈ {vB}∪NB is nominal if there is o ∈ Co such
that o ∈ l(v). Otherwise, v is a non-nominal node;

2. A node v ∈ {vB} ∪NB is valid w.r.t. D and (T ,R) iff
(a) tbox-rule: If C v D ∈ T then nnf(¬C t D) ∈ l(v),

and
(b) clash-rule: {A,¬A} 6⊆ l(v) with any concept name

A, and
(c) u-rule: If C1 u C2 ∈ l(v) then {C1, C2} ⊆ l(v), and
(d) t-rule: If C1 t C2 ∈ l(v) then {C1, C2} ∩ l(v) 6= ∅.

3. A neighborhood B = (vB , NB , l) is valid iff all nodes
{vB} ∪ NB are valid and the following conditions are
satisfied:

(a) ∃-rule: If ∃R.C ∈ l(vB) then there is a neighbor v ∈
NB such that C ∈ lB(v) and R ∈ l〈vB , v〉;

(b) rbox-rule: For each v ∈ NB , if R ∈ l〈vB , v〉 and
R∗vS then S ∈ l〈vB , v〉;



(c) ∀-rule: For each v ∈ NB , if R ∈ l〈vB , v〉 (resp. R ∈
Inv(l〈vB , v〉)) and ∀R.C ∈ l(vB) (resp. ∀R.C ∈ l(v))
then C ∈ l(v) (resp. C ∈ l(vB));

(d) ∀+-rule: For each v ∈ NB , if Q+ ∈ l〈vB , v〉 (resp.
Q+ ∈ Inv(l〈vB , v〉)), Q+ ∗vR ∈ R and ∀R.D ∈ l(vB)
(resp. ∀Inv(R).D ∈ l(v)) then ∀Q+.D ∈ l(v) (resp.
∀Inv(Q+).D ∈ l(vB));

(e) o-rule: For each o ∈ Co, if o ∈ l(u) ∩ l(v) with
{u, v} ⊆ {vB} ∪NB then l(u) = l(v);

(f) ≤∞-rule: There is at most one node v ∈ NB such
that l(v) = C and l〈vB , v〉 = R for each C ∈
2sub(T ,R,D),R ∈ 2R.

We denote B(T ,R,D) for a set of all valid neighborhoods for
D w.r.t. (T ,R). When it is clear from the context we will
use B instead of B(T ,R,D).

The condition 3f in Definition 3 ensures that any neighbor-
hood has a finite number of neighbors.

As mentioned, a valid neighborhood as presented in Def-
inition 3 satisfies all concept definitions in the label associ-
ated with the core node. For this reason, neighborhoods can
be still used to tile a completion tree for SHIO+ without
taking care of expansion rules for SHIO.

Lemma 1 Let D be an SHIO+ concept with a terminol-
ogy T and role hierarchy R. Let (vB , NB , l), (vB′ , NB′ , l)
be two valid neighborhoods with l(vB) = l(vB′). If there is
v ∈ NB such that there does not exist any v′ ∈ NB′ satis-
fying l(v′) = l(v) and l〈vB , v〉 = l〈vB′ , v

′〉 then the neigh-
borhood (vB′ , NB′ ∪ {u}, l) is valid where l(u) = l(v) and
l〈vB′ , u〉 = l〈vB , v〉.
This lemma holds due to the facts that (i) a valid neighbor in
a valid neighborhood B is also a valid neighbor in another
valid neighborhood B′ if the labels of two core nodes of B
and B′ are identical, (ii) since SHIO+ does not allow for
number restrictions hence Definition 3 has no restriction on
the number of neighbors of a core node.

Completion Tree with Cyclic Paths
As discussed in works related to tableau-based technique,
the blocking technique fails in treating DLs with the tran-
sitive closure of roles. It works correctly only if the satis-
fiability of a node in completion tree can be decided from
its neighbors and itself i.e. local satisfiability must be suf-
ficient for such completion trees. However, the presence of
the transitive closure of roles makes satisfiability of a node
depend on further nodes which can be arbitrarily far from it.

More precisely, satisfying the transitive closure P+ in an
edge 〈x, y〉 (i.e. P+ ∈ L〈x, y〉) is related to a set of nodes
on a path rather than a node with its neighbors i.e. it imposes
a semantic constraint on a set of nodes x, x1, · · · , xn, y such
that they are connected together by P -edges. In general, sat-
isfying the transitive closure is quite nondeterministic since
the semantic constraint can lead to be applied to an arbitrary
number of nodes. In addition, the presence of transitive clo-
sure of roles in a role hierarchy makes this difficulty worse.
For instance, if P v Q+, Q v S+ are axioms in a role hi-
erarchy then each Q-edge generated for satisfying Q+ may

lead to generate an arbitrary number of S-edges for satisfy-
ing S+.

The most common way for dealing with a new logic con-
structor is to add a new expansion rule for satisfying the se-
mantic constraint imposed by the new constructor. Such an
expansion rule for the transitive closure of roles must:

1. find or create a set of P -edges forming a path for each
occurrence of P+ in the label of edges;

2. deal with non-deterministic behaviours of the expansion
rule resulting from the semantics of the transitive closure
of roles;

3. enable to control the expansion of completion trees by a
new blocking technique which has to take into account
the fact that satisfying the transitive closure of a role may
add an arbitrary number of new transitive closures to be
satisfied.

To avoid these difficulties, our approach does not aim to di-
rectly extend the construction of completion trees by using
a new expansion rule, but to translate this construction into
selecting a “good” completion tree, namely completion tree
with cyclic paths, from a finite set of trees without taking
into account the semantic constraint imposed by the transi-
tive closure of roles. The process of selecting a “good” com-
pletion tree is guided by finding in a completion tree (which
is well built in advance) a cyclic path for each occurrence of
the transitive closure of a role.

Summing up, a completion tree with cyclic paths will be
built in two stages. The first one which yields a tree consists
of tiling valid neighborhoods together such that two neigh-
borhoods are tiled if they have compatible neighbors. The
second stage deals with the transitive closure of roles by
defining cyclic paths over the tree obtained from the first
stage. Both of them are presented in Definition 4.

Definition 4 (Completion Tree with Cyclic Paths) Let D
be a SHIO+ concept with a terminology T and role hi-
erarchy R. Let B be the set of all valid neighborhoods for
D w.r.t. (T ,R). A tree T = (V,E, L) for D w.r.t. (T ,R) is
defined from B(T ,R,D) as follows.

1. If there is a valid neighborhood (v0, N0, l) ∈ B with
D ∈ l(v0) then a root node x0 and successors x of x0 are
added to V such that L(x0) = l(v0), and L(x) = l(v),
L〈x0, x〉 = l〈v0, v〉 for each v ∈ N0.

2. For each node x ∈ V with its predecessor x′,
(a) If there is an ancestor y of x such that L(y) = L(x)

then x is blocked by y. In this case, x is a leaf node;
(b) Otherwise, if we find a valid neighborhood (vB , NB , l)

from B such that
i. l(vB) = L(x), l(v) = L(x′), Inv( l〈vB , v〉 ) =
L〈x′, x〉 for some v ∈ NB , and

ii. if there is some nominal o ∈ Co such that o ∈ l(u) ∩
L(w) with u ∈ NB \ {v}, w ∈ V then l(u) = L(w)

then we add a successor y of x for each u ∈ NB \ {v}
such that L(y) = l(u) and L(〈x, y〉) = l(〈vB , u〉).

We say a node x is aR-successor of x′ ∈ V ifR ∈ L〈x′, x〉.
A node x is called a R-neighbor of x′ if x is a R-successor



of x′ or x′ is a Inv(R)-successor of x. In addition, a node x
is called a R-block of x′ if x blocks a R-successor of x′ or
x′ blocks a Inv(R)-successor of x.
T = (V,E, L) is called a completion tree with cyclic paths
if for each 〈u, v〉 ∈ E such that Q+ ∈ L〈u, v〉 and Q /∈
L〈u, v〉 there exists a cyclic path ϕ = 〈x0, · · · , xn〉 which
is formed from nodes vi ∈ V and satisfies the following
conditions:

• x0 = u and xi is not blocked for all i ∈ {0, · · · , n};
• There do not exist i, j ∈ {1, · · · , n − 1} with j > i such

that L(xi) = L(xj);
• L(xn) = L(v) and xi is aQ-neighbor orQ-block of xi+1

for all 0 ≤ i ≤ n− 1.

In this case, ϕ is called a cyclic path and denoted by ϕ〈u,v〉.

Note that the construction of completion trees uses the
equality blocking L(x) = L(y) for termination condition. A
completion tree encapsulates the following notions: neigh-
borhood, blocking condition and cyclic path. The first one
captures the semantics of all logic constructors except for the
transitive closure of roles. The second one which was intro-
duced in (Horrocks, Sattler, and Tobies 1999) is crucial for
obtaining a finite representation of a possibly infinite model.
The third one represents the transitive closure of roles.

At this point we have gathered all necessary elements to
introduce a decision procedure for the concept satisfiability
in SHIO+. However, in order to provide a upper bound on
the size of models of satisfiable SHIO+-concepts we need
an extra structure, namely reduced tableau.

Definition 5 (Reduced Tableau) Let T = (V,E,L) be a
completion tree with cyclic paths for a SHIO+-concept D
with a terminology T and role hierarchyR. An equivalence
relation ∼ over V is defined as follows: x ∼ y iff L(x) =
L(y).

Let V/∼:= {[x] | x ∈ V } be the set of all equivalence
classes of V by ∼. A graph G = (V/ ∼, E′, L) is called
reduced tableau for D w.r.t. (T ,R) if:

• L([x]) = L(x′) for any x′ ∈ [x];
• 〈[x], [y]〉 ∈ E′ iff there are x′ ∈ [x], y′ ∈ [y] such that
〈x′, y′〉 ∈ E;

• L(〈[x], [y]〉) =
⋃

x′∈[x],y′∈[y],〈x′,y′〉∈E

L(〈x′, y′〉) ∪⋃
x′∈[x],y′∈[y],〈y′,x′〉∈E

Inv(L〈y′, x′〉)

where Inv(L〈x, y〉) = {Inv(R) | R ∈ L〈y, x〉}

A reduced tableau as defined in Definition 5 identifies
nodes whose labels are the same. This construction pre-
serves not only the validity of neighborhoods but also cyclic
paths. Indeed, what may be locally changed is the number
of neighbors of a node from completion tree. Again, since
number restrictions are not allowed in SHIO+ this change
does not violate the validity of neighborhoods. Moreover, a
node that is a R-neighbor of another one remains to be a R-
neighbor after identifying nodes whose labels are the same.
This explains why cyclic paths are preserved.

Lemma 2 Let D be a SHIO+-concept with a terminology
T and role hierarchy R. Let G = (V/ ∼, E′, L) be a re-
duced tableau for D w.r.t. (T ,R). We define ∆I = V/∼
and a function ·I that maps:

• each concept name A occurring in D, T and R to AI ⊆
V/∼ such that AI = {[x] | A ∈ L([x])};

• each role name R occurring in D, T and R to RI ⊆
(V/∼)2 such that RI = {〈[x], [y]〉 | R ∈ L〈[x], [y]〉} ∪

{〈[y], [x]〉 | Inv(R) ∈ L〈[x], [y]〉}
If D has a reduced tableau G then I = (∆I , ·I) is a model
of D w.r.t. (T ,R).

The following lemma affirms that a reduced tableau of a
concept D can represent a model of this concept. A men-
tioned above, a reduced tableau preserves the validity of
neighborhoods and cyclic paths of a completion tree. Ac-
cording to Definition 3, all semantic constraints imposed by
concept definitions in the label of a node are satisfied. More-
over, each cyclic path represents a sequence of nodes that al-
lows to satisfy the transitive closure of a role P+ occurring
in the label of an edge. These properties help prove Lemma
2.

The following proposition is an immediate consequence
of Lemma 2.

Proposition 1 Let D be a SHIO+-concept with a termi-
nology T and role hierarchyR. If there is a completion tree
with cyclic paths T for D w.r.t. (T ,R) then D has a finite
model whose size is bounded by an exponential function in
the size of D, T andR.

Indeed, by the construction of the reduced tableau G =
(V/ ∼, E′, L), the number of nodes of G is bounded by
2K where K is the cardinality of sub(T ,R, D), which is
a polynomial function in the size of D, T andR.

Lemma 3 Let D be a SHIO+-concept. Let T and R be
a terminology and role hierarchy. If D has a model w.r.t.
(T ,R) then there exists a completion tree with cyclic paths.

A proof of Lemma 3 can be performed in three steps.
First, we define directly valid neighborhoods from individu-
als of a model. Next, a completion tree can be built by tiling
valid neighborhoods with help of role relationships between
individuals of the model. Finally, cyclic paths are embedded
into the obtained tree by devising paths from finite cycles
for the transitive closure of roles in the model. Lemma 1
makes possible adding a new node to a given neighborhood
as neighbor if the new node is a neighbor of a node whose
label equals to that of the core node of the neighborhood.

From the construction of completion trees with cyclic
paths according to Definition 4 and Lemma 2 and 3, we can
devise immediately Algorithm 1 for the concept satisfiabil-
ity in SHIO+.

Lemma 4 (Termination) Algorithm 1 for SHIO+ termi-
nates and the size of completion trees is bounded by a double
exponential function in the size of inputs.

Termination of Algorithm 1 is a consequence of the fol-
lowing facts: (i) the number of valid neighborhoods is
bounded, (ii) the size of completion trees which are tiled



Input : Concept D, terminology T and role hierarchy
R

Output: IsSatisfiable(D)

foreach Tree T = (V,E,L) obtained from tiling valid1
neigborhoods do

if For each 〈x, y〉 ∈ E with2

Q+ ∈ L〈x, y〉, Q /∈ L〈x, y〉, T has a ϕ〈x,y〉 then
return true;3

return false;4

Algorithm 1: Decision procedure for concept satisfia-
bility in SHIO+

from valid neighborhoods is bounded by (2m×n)2
n×(m+1)

where m = card{sub(T ,R, D)}, n = card{R}.
Algorithm 1 is highly complex since it is not a goal-

directed procedure. Such an exhaustive behavior is very dif-
ferent from that of tableau-based algorithms in which the
construction of a completion tree is inherited from step to
step. In Algorithm 1, when a tree obtained from tiling neigh-
borhoods cannot satisfy an occurrence of the transitive clo-
sure of a role (after satisfying others), the construction of
tree has to restart. The following theorem is a direct conse-
quence of Lemma 3 and 4.

Theorem 1 Algorithm 1 is a decision procedure for the sat-
isfiability of SHIO+-concepts w.r.t. a terminology and role
hierarchy, it runs in deterministic 3-EXPTIME and nonde-
terministic 2-EXPTIME.

Thm. 1 is a consequence of the following facts: (i) the
size of completion trees is bounded by a double exponen-
tial function in the size of inputs , and (ii) the number of of
completion trees is bounded by a triple exponential function
in the size of inputs.

Remark 1 From the construction of reduced tableaux in
Definition 5, we can devise an algorithm for deciding the
satisfiability in SHIO+ which runs in NEXPTIME. In fact,
such an algorithm can check the validity of neighborhoods
and cycles for transitive closures in a graph whose size is
bounded by an exponential function in the size of the input.

Adding number restrictions to SHI+

The logic SHIN+ is obtained from SHI+ (SHIO+ with-
out nominals) by allowing, additionally, for number restric-
tions, i.e., for concepts of the form (≥ nR) and (≤ nR)
where R is a simple role and n is a non-negative integer.

Definition 6 Let R,C be sets of role and concept names.
The set of SHIN+-roles, role hierarchy R and model I of
R are defined similarly to those in Def. 1.
∗ A roleR is called simple w.r.t. R iff (Q+ ∗vR) /∈ R for any
Q+ ∈ R+.
∗ The set of SHIN+-concepts is inductively defined as the
smallest set containing all C ∈ C, >, C uD, C tD, ¬C,
∃R.C, ∀R.C, (≤ nS) and (≥ nS) where C and D are
SHIN+-concepts, R is a SHIN+-role and S is a simple

role. We denote ⊥ for ¬>.
∗ An interpretation I = (∆I , ·I) consists of a non empty
set ∆I (domain) and a function ·I which maps each concept
name to a subset of ∆I . In addition, the function ·I satisfies
the conditions for the logic constructors in SHI+ (as intro-
duced in Def. 2 without nominal), and
(≥nR)I = {x ∈ ∆I | card{y ∈ ∆I | 〈x, y〉 ∈ RI} ≥ n},
(≤nR)I ={x ∈ ∆I | card{y ∈ ∆I | 〈x, y〉 ∈ RI)} ≤ n}
∗ Satisfiability of a SHIN+-concept C w.r.t. a role hier-
archy R and a terminology T is defined similarly to that in
Def. 2.

A definition for tableaux in SHIN+ would be given
by combining the properties from tableaux in SHIN and
SHI+. In addition, a definition for neighborhoods in
SHIN+ would be provided if we adopt that there may be
two neighborhoods such that the labels of their core nodes
are identical but they cannot be merged together i.e. a prop-
erty being similar to Lem. 1 no longer holds for SHIN+.
In such a situation, the local information related to the la-
bels of the ending nodes of a path would be not sufficient to
form a cycle. This prevents us from embedding cyclic paths
to a normalization trees in guaranteeing the soundness and
completeness. Note that for the logics SHI+ and SHIO+

we can transform a reduced tableau to a tableau such that if
any two nodes x, y having the same label then there is an
isomorphism between the two neighborhoods (x,Nx, l) and
(y,Ny, l). This means that if we know the label of a node in
such a tableau it is possible to determine all nodes which are
arbitrarily far from this node. This property does not hold
for SHIN+ tableaux.

Notice that this difficulty does not occur when embed-
ding cyclic paths to a normalization tree is not necessary.
Therefore, it is very believable that a decision procedure for
SHIQ with the transitive closure of roles appearing only in
concept inclusion axioms could be obtained by tiling neigh-
borhoods for SHIQ.

In the sequel, we show that the difficulty mentioned is
insurmountable i.e. the concept satisfiability problem in
SHIN+ is undecidable. The undecidability proof uses a
reduction of the domino problem (Berger 1966). The fol-
lowing definition, which is taken from (Horrocks, Sattler,
and Tobies 1999), reformulates the problem in a more pre-
cise way.

Definition 7 A domino system D = (D,H,V) consists of
a non-empty set of domino types D = {D1, · · · , Dl} and
of sets of horizontally and vertically matching pairs H ⊆
D×D and V ⊆ D×D. The problem is to determine if, for a
given D, there exists a tiling of an N×N grid such that each
point of the grid is covered with a domino type in D and all
horizontally and vertically adjacent pairs of domino types
are inH and V respectively, i.e., a mapping t : N×N→ D
such that for all m,n ∈ N, 〈t(m,n), t(m+ 1, n)〉 ∈ H and
〈t(m,n), t(m,n+ 1)〉 ∈ V .

The reduction of the domino problem to the satisfiability
of SHIN+-concepts will be carried out by (i) constructing
a concept, namelyA, and two sets of concept and role inclu-
sion axioms, namely TD and RD, and (ii) showing that the
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Figure 1: The grid illustrates a model of the concept A w.r.t
the axioms

domino problem is equivalent to the satisfiability of A w.r.t.
TD and RD. Axioms in Definition 8 specify a grid (Fig.1)
that represents such a domino system.

Globally, given a domino set D = {D1, · · · , Dl}, we
need axioms that impose that each point of the plane is
covered by exactly one DIi (axiom 8 in Definition. 8) and
ensure that each Di is compatibly placed in the horizontal
and vertical lines (axiom 9). Locally, the key idea is to use
SHIN+ axioms for describing the grid as illustrated in Fig-
ure 2. For example, we consider how a square of the grid can
be formed. Axiom 10 in Definition 8 says that if A has an
instance xIA with an interpretation I, then there are three in-
stances xIB , x

I
C , x

I
D in BI , CI , DI , respectively, such that

〈xIA, xIB〉 ∈ X1
1
I , 〈xIA, xIC〉 ∈ Y 1

1
I and 〈xIA, xID〉 ∈ εAD

I .
These instances are distinct since A,B,C,D are disjoint
by axioms 10, 11, 12 and 13. In addition, by axioms 11,
12, there are x′ID , x

′′I
D ∈ DI such that 〈xIB , x′ID 〉 ∈ Y 1

2
I ,

〈xIC , x′′ID 〉 ∈ X1
2
I . This is depicted in Figure 2.

Since P 11
12 subsumes X1

1 , Y
1
2 by axiom 1, we have

〈xIA, x′ID 〉 ∈ (P 11
12

+)
I

. Moreover, since P 11
12 is functional

by axiom 5, 〈xIA, xID〉 ∈ (P 11
12

+)
I

by axiom 3, and εAD
I ⊆

(P 11
12

+)
I

by axiom 3, there are two possibilities: (i) xID =
x′ID , and (ii) there is yI such that 〈x′ID , yI〉 ∈ (P 11

12 )I . This
contradicts axiom 13. Therefore, xID = x′ID . Similarly, we
can get xID = x′′ID . By this way, the axioms in Definition 8
can yield a grid as in Figure 2 if concept A is satisfiable.

Definition 8 Let D = (D,H,V) be a domino system with
D = {D1, · · · , Dl}. Let NC and NR be sets of concept and
role names such thatNC = {A,B,C,D}∪D, NR = {Xi

j |
i, j ∈ {1, 2}} ∪ {X,Y } ∪ {P ij

rs | i, j, r, s ∈ {1, 2}, r 6=
s} ∪ {εAD, εDA, εBC , εCB}

Role hierarchy:

1. Xi
r v P ij

rs, Y
j
s v P ij

rs for all i, j, r, s ∈ {1, 2}, r 6= s,
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Figure 2: How each square can be formed from a diagonal
represented by an ε

2. Xi
r v X,Y i

r v Y for all i, r ∈ {1, 2},
3. εADvP 11

12
+
, εAD v P 11

21
+,εDA v P 22

12
+
, εDA v P 22

21
+,

4. εBCvP 21
21

+
, εBC v P 21

12
+, εCB v P 12

21
+
, εCB v P 12

12
+,

Concept inclusion axioms:
5. > v≤1P ij

rs for all i, j, r, s ∈ {1, 2}, r 6= s,
6. > v ≤ 1X,> v ≤ 1Y ,
7. >v≤ 1εAD, >v≤ 1εDA, >v≤ 1εBC , >v≤ 1εCB ,

8. > v
⊔

1≤i≤l

(Di u (
l

1≤j≤l,j 6=i

¬Dj)),

9. Di v ∀X.
⊔

(Di,Dj)∈H

Dj u ∀Y.
⊔

(Di,Dk)∈V

Dk for each

Di ∈ D,
10. A v ¬B u ¬C u ¬D u ∃X1

1 .B u ∃Y 1
1 .C u ∃εAD.D u

∀P 22
12 .⊥ u ∀P 22

21 .⊥,
11. B v ¬A u ¬C u ¬D u ∃X2

2 .A u ∃Y 1
2 .D u ∃εBC .C u

∀P 12
21 .⊥ u ∀P 12

12 .⊥,
12. C v ¬A u ¬B u ¬D u ∃X1

2 .D u ∃Y 2
2 .A u ∃εCB .B u

∀P 21
21 .⊥ u ∀P 21

12 .⊥,
13. D v ¬A u ¬B u ¬C u ∃X2

1 .C u ∃Y 2
1 .B u ∃εDA.A u

∀P 11
12 .⊥ u ∀P 11

21 .⊥.

Theorem 2 (Undecidability of SHIN+) The concept A
is satisfiable w.r.t. concept and role inclusion axioms in Def-
inition 8 iff there is a compatible tiling t of the first quadrant
N× N for a given domino system D = (D,H,V).

A proof of Theorem 2 can be found in Appendix.

Conclusion and Discussion
We have presented in this paper a decision procedure for
the logic SHIO+ and shown the finite model property for
this logic. To do this we have introduced the neighborhood
notion which is an abstraction of the local satisfiability prop-
erty of tableaux enables us to encapsulate all semantic con-
straints imposed by the logic constructors in SHIO, and
thus to deal with transitive closure of roles independently
from the other constructors. With help of this method, we



can push the expressiveness of logics to the border between
decidability and undecidability.

According to Remark 1, we can devise a decision pro-
cedure for deciding the concept satisfiability in SHIO+

so that it runs in nondeterministic exponential time (NEX-
PTIME). This result with the proof of Lemma 4 implies that
this procedure runs in a deterministic doubly exponential.
However, the worst-case complexity of the problem remains
an open question.

This work is a crucial step toward an empirical algorithm
whose behavior is more goal-directed i.e. the construction
of a completion tree would be refined along with satisfying
transitive closure of roles, e.g., the non-impacted parts of the
tree when rebuilding it would be reused. Such behaviours
are inspired from tableaux-based algorithms in which a node
of a completion graph should be generated only if necessary.
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Appendix
To prove the results in the report, we need the following def-
inition.
Definition 9 Let (T ,R) be an SHI+ ontology. A tableau
T for a concept D w.r.t (T ,R) is defined to be a triplet
(S,L, E) such that S is a set of individuals, L: S →
2sub(T ,R,D) and E: R → 2S×S, and there is some indi-
vidual s ∈ S such that D ∈ L(s). For all s ∈ S,
C,C1, C2 ∈ sub(T ,R, D), and R,S, P+ ∈ R, T satis-
fies the following properties:

(P1) If C1 v C2 ∈ T and s ∈ S then nnf(¬C1 t C2) ∈ L(s);
(P2) If C ∈ L(s), then ¬C /∈ L(s);
(P3) If C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s);
(P4) If C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s);
(P5) If ∀S.C ∈ L(s) and 〈s, t〉 ∈ E(S), then C ∈ L(t);
(P6) If ∃S.C ∈ L(s), there is t ∈ S such that 〈s, t〉 ∈ E(S)

and C ∈ L(t);
(P7) If ∀S.C ∈ L(s), Q+ ∗vS ∈ R and 〈s, t〉 ∈ E(Q+) then

∀Q+.C ∈ L(t);
(P8) 〈s, t〉 ∈ E(R) iff 〈t, s〉 ∈ E(Inv(R));
(P9) If 〈s, t〉 ∈ E(P+) then either 〈s, t〉 ∈ E(P ), or there exist

t1, · · · , tn ∈ S such that 〈s, t1〉, 〈t1, t2〉, · · · , 〈tn, t〉 ∈
E(P );

(P10) If o ∈ L(s) ∩ L(t) for some o ∈ Co then s = t

(P11) If 〈s, t〉 ∈ E(R), R∗vS then 〈s, t〉 ∈ E(S).
Note that the property P8 in Definition 9 expresses explic-

itly a cycle for each transitive closure occurring in the label
of an edge 〈s, t〉. A tableau for a concept represents exactly
a model for the concept, that is affirmed by the following
lemma.
Lemma 5 An SHIO+-concept D is satisfiable w.r.t.
(T ,R) iff D has a tableau.

Proof of Lemma 5.
• ”If-direction”. Let T = (S,L, E) be a tableau for D
and D ∈ L(s0). A model I = (∆I , .I) can be defined as
follows:

∆I = S,
AI = {s | A ∈ L(s) for all concept name A in

sub(T ,R, D)},
RI = E(R) ∪

⋃
Q+ ∗vR

E(Q)+ for all R in sub(T ,R, D)

To show that I is a model of D w.r.t. (T ,R), we have to
show:



1. I is an interpretation. Indeed,

(a) Assume 〈s, t〉 ∈ Inv(R)I . By P7 we have 〈t, s〉 ∈ RI .
(b) Assume 〈s, t〉 ∈ RI . From the definition of I, there

are two cases: (i) there is no Q+ ∗vR ∈ R i.e. 〈s, t〉 ∈
E(R), (ii) there is Q+ ∗vR ∈ R. This means that there
are 〈s, t1〉, · · · , 〈tn, t〉 ∈ E(Q). In particular, if R =
Q+ i.e. Q+ ∗vR ∈ R there are 〈s, t1〉, · · · , 〈tn, t〉 ∈
E(Q).

(c) It is easy to check the concept mappings.

2. I |= R. Assume R v S. We have to prove RI ⊆ SI .
Let 〈s, t〉 ∈ RI . By P9, it follows 〈s, t〉 ∈ E(S). From
the definition of I we have 〈s, t〉 ∈ SI .

3. I |= T . Assume C v D. We have to prove CI ⊆ DI .
Let s ∈ CI . From P1 we obtain nnf(¬C t D) ∈ L(s).
By P2 and P2 we have s ∈ DI .

4. DI 6= ∅.
The last item is proved if we can show thatC ∈ L(s) implies
s ∈ CI for all s ∈ S (*). In fact, since T is a tableau for D
and thus, there exists s ∈ S such that D ∈ L(s). By (*) it
follows DI 6= ∅.
We now prove (*) by induction on the length of a concept C,
denoted length(C) where C in NNF, is defined as follows:

len(A) := len(¬A) := 0
len(C1 u C2) := len(C1 t C2) := 1+len(C1)

+len(C2)
length(∀R.C) := len(∃R.C) := 1+len(C)

Two basic cases are C = A or C = ¬A. If A ∈ L(s) then,
by the definition of I, s ∈ AI . If ¬A ∈ L(s) then, by P2,
A /∈ L(s) and thus s /∈ AI . For the inductive step, we have
to distinguish several cases:

• C = C1 u C2. P3 and C ∈ L(s) imply C1, C2 ∈ L(s).
By induction, we have s ∈ CI1 and s ∈ CI2 . Since I is an
interpretation hence s ∈ (C1 u C2)I .

• C = C1 t C2. The same argument.

• C = ∃S.E. P6 and C ∈ L(s) imply the existence of t ∈
S s.t. 〈s, t〉 ∈ E(S) and E ∈ L(t). By induction, we have
t ∈ EI and from the definition of SI , we obtain 〈s, t〉 ∈
SI . Since I is an interpretation hence s ∈ (∃S.E)I =
CI .

• C = ∀S.E. Let s ∈ S with C ∈ L(s) and let t ∈ S
be an individual such that 〈s, t〉 ∈ SI . According to the
definition of I, we consider the following cases:

– 〈s, t〉 ∈ E(S). P5 implies E ∈ L(t) and by in-
duction, t ∈ EI . Since I is an interpretation hence
s ∈ (∀S.E)I = CI .

– 〈s, t1〉, · · · , 〈tn, t〉 ∈ E(Q) if there is Q+ ∗vS ∈ R.
Since Q∗vQ+ ∈ R we have 〈s, t1〉, · · · , 〈tn, t〉 ∈
E(Q+). Moreover, since Q+ ∗vS and P11, we have
〈s, t1〉, · · · , 〈tn, t〉 ∈ E(S). By P5 and P7, we have
{E,∀Q+.E} ⊆ L(ti) for all i ∈ {1, · · · , n} and
{E,∀Q+.E} ⊆ L(t). By induction, t ∈ EI . Since
I is an interpretation hence s ∈ (∀S.E)I = CI .

• ”Only-If-direction”. We have to show satisfiability of D
w.r.t. R and T implies the existence of a tableau T for D
w.r.t. R and T .

Let I = (∆I , .I) be a model of D w.r.t. R and T . A
tableau T = (S,L, E) for D can be defined as follows:

S = ∆I ,
E(R) = RI for all R occurring in sub(T ,R, D),
L(s) = {C ∈ sub(T ,R, D) | s ∈ CI}

• Properties P1, P2, P3, P4, P5 and P6 are obvious.
• Property P7. Assume that ∀S.C ∈ L(s) with
Q+ ∗vS ∈ R. Let t ∈ S be an individual such
that 〈s, t〉 ∈ E(Q+). Assume that there are
〈t, r1〉, · · · , 〈rn, r〉 ∈ E(Q) = QI . We have to
show C ∈ L(r) since this implies ∀Q+.C ∈ L(t).
We have 〈s, t1〉, · · · , 〈tm, t〉, 〈t, r1〉, · · · , 〈rn, r〉 ∈
E(Q) = QI . Due to Q∗vQ+ ∈ R, Q+ ∗vS ∈ R and I is
a model of R, we have 〈s, r〉 ∈ E(S). Moreover, since I
is a model, 〈s, t〉 ∈ E(S) = SI we have r ∈ CI . That
means that C ∈ L(r) .

• Property P8 is a consequence of I |= R and the definition
of E .

• Property P9. Assume that 〈s, t〉 ∈ E(P+). By the def-
inition of E we have 〈s, t〉 ∈ (P+)I . This implies that
either 〈s, t〉 ∈ P I or there exist 〈s, t1〉, · · · , 〈tn, t〉 ∈ P I .
By the definition of E we obtain either 〈s, t〉 ∈ E(P ) or
〈s, t1〉, · · · , 〈tn, t〉 ∈ E(P ).

• Property P10. Assume that 〈s, t〉 ∈ E(R) andR∗vS. This
implies that 〈s, t〉 ∈ RI . We consider two cases:
– R v S ∈ R. From I |= R it follows 〈s, t〉 ∈ SI . By

the definition of E we have 〈s, t〉 ∈ E(S).
– there exist R v S1 v, · · · ,v Sn v S. By induction

on n it is not hard to show that 〈s, t〉 ∈ SI . Thus, by
the definition of E we have 〈s, t〉 ∈ SI .

• Property P11. This is deduced from the semantics of
nominals : card{oI} = 1 for all o ∈ Co.

Lemma (2). Let D be a SHIO+-concept w.r.t. a terminol-
ogy T and role hierarchy R. Let G = (V/∼, E′, L) be a
reduced tableau for D w.r.t. (T ,R). We define ∆I = V/∼
and a function ·I that maps:
• each concept name A occurring in D, T and R to AI ⊆
V/∼ such that AI = {[x] | A ∈ L([x])};

• each role name R occurring in D, T and R to RI ⊆
(V/∼)2 such that RI = {〈[x], [y]〉 | R ∈ L〈[x], [y]〉} ∪

{〈[y], [x]〉 | Inv(R) ∈ L〈[x], [y]〉}
If D has a reduced tableau G then I = (∆I , ·I) is a model
of D w.r.t. (T ,R).

Lemma 2 will be shown if the following is proved.

Lemma 6 Let D be an SHI+-concept w.r.t. a terminology
T and role hierarchyR. Let T = (V,E, L) andG = (V/∼
, E′, L) be a completion tree with cyclic paths and tableau
graph for D w.r.t. (T ,R). We define a triplet T = (S,L, E)
from G as follows:
• S = V/∼,
• L([x]) = L([x]) with [x] ∈ V/∼,



• E(R) = {〈[x], [y]〉 | R ∈ L(〈[x], [y]〉)} ∪ {〈[y], [x]〉 |
Inv(R) ∈ L(〈[x], [y]〉)}

It holds that T is a tableau of D w.r.t. (T ,R).

Proof of Lemma 6. Let T = (S,L, E). We will prove that T
satisfies all the properties from Definition 9.

• D ∈ L([x0]) since D ∈ L(x0) according to Definition 4;

• Property P1. Let [x] ∈ S. According to the definition of
neighborhood (tbox-rule) we have nnf(¬C tD) ∈ L(x)
for all x ∈ V with C v D ∈ T . This implies that
nnf(¬C tD) ∈ L(x) for all C v D ∈ T .

• Property P2 holds since the nodes x ∈ V are built
from valid neighborhoods (i.e. satisfying clash-rule) and
L([x]) = L(x).

• Properties P3,P4 hold thanks to the u-rule and t-rule in
the definition of neighborhoods (Definition 3);

• Property P5. Assume ∀S.C ∈ L([x]) and 〈[x], [y]〉 ∈
E(S). According to the definition of E , we consider the
following cases:

1. S ∈ L(〈[x], [y]〉). By the construction of G, there
are x′ ∈ [x], y′ ∈ [y] such that S ∈ L(〈x′, y′〉) or
Inv(S) ∈ L(〈y′, x′〉). By the construction of T it fol-
lows that x′, y′ are respectively a core and neighbor
node of a neighborhood (x′, N, l) with S ∈ l(x′, y′),
y′ ∈ N . By ∀-rule we have C ∈ l(y′). Moreover, by
the construction of T it followsC ∈ L(y′). By the con-
struction ofG, it holdsC ∈ L([y]) sinceL(y) = L(y′),
and thus C ∈ L([y]).

2. Inv(S) ∈ L(〈[y], [x]〉). By the construction of G, there
are x′ ∈ [x], y′ ∈ [y] such that Inv(S) ∈ L(〈y′, x′〉) or
S ∈ L(〈x′, y′〉). By the construction of T it follows
that x′, y′ are respectively a core and neighbor node
of a neighborhood (y′, N, l) with Inv(S) ∈ l(y′, x′),
x′ ∈ N . By ∀-rule we have C ∈ l(y′). Moreover, by
the construction of T it followsC ∈ L(y′). By the con-
struction of G, it holds C ∈ L([y]) since L(y) = L(y′)
and thus C ∈ L([y]).

• Property P6. Assume ∃R.C ∈ L([x]). We will show that
there exists [y] ∈ S such that C ∈ L([y]) and 〈[x], [y]〉 ∈
E(R).
By the construction of G, we have ∃R.C ∈ L(x). By
the construction of T, x is a core node of a neighborhood
(x,N, l). By ∃-rule there is a neighbor y ∈ N such that
C ∈ l(y) and R ∈ l(〈x, y〉). Again, by the construction
of T, x has a neighbor y in T such that C ∈ L(y) and
R ∈ L(〈x, y〉) or Inv(R) ∈ L(〈y, x〉). We consider the
following cases:

– R ∈ L(〈x, y〉). By the construction of G, we have C ∈
L([y]) andR ∈ L(〈[x], [y]〉). By the construction of the
tableau T , it holds 〈[x], [y]〉 ∈ E(R) and C ∈ L([y]).

– Inv(R) ∈ L(〈y, x〉). By the construction ofG, we have
C ∈ L([y]) and Inv(R) ∈ L(〈[y], [x]〉). By the con-
struction of the tableau T , it holds 〈[y], [x]〉 ∈ E(R)
and C ∈ L([y]).

• Property P7 is satisfied due to the bidirectional definition
of E .

• Property P8. Assume that 〈[x], [y]〉 ∈ E(Q+) with Q ∈
R ∪ {Inv(P ) | P ∈ R} and 〈[x], [y]〉 /∈ E(Q). By the
construction of G, there are x′ ∈ [x], y′ ∈ [y] such that
Q+ ∈ L(〈x′, y′〉) and Q /∈ L(〈x′, y′〉).
By the construction of T, there is ϕ =
〈x0, x1, x2, · · · , xn, xn+1〉 with x′ = x2, and y′ = w
where w = x1 if x1 is not blocked or w = z if x1

is blocked by z. Furthermore, these nodes satisfy the
following conditions

– L(x1) = L(xn+1), L(x0) = L(xn) .
– Q ∈ L′(〈xi, xi+1〉) for all i ∈ {2, · · · , n} where
L′(〈xi, xi+1〉) = L(〈xi, xi+1〉) if 〈xi, xi+1〉 ∈ E;
L′(〈xi, xi+1〉) = Inv( L(〈xi+1, xi〉) ) if 〈xi+1, xi〉 ∈
E; L′(〈xi, xi+1〉) = L(〈xi, z〉) ) if 〈xi, z〉 ∈ E and
xi+1 blocks z.

By the definition of ∼, we have y′, xn+1 ∈ [x1] and x0 ∈
[xn]. From the definition of G, we consider the following
cases for all i ∈ {2, · · · , n− 1}:
– If Q ∈ L(〈xi, xi+1〉) then Q ∈ L(〈[xi], [xi+1]〉),
– IfQ ∈ Inv( L(〈xi+1, xi〉) ) thenQ ∈ L(〈[xi], [xi+1]〉),
– If Q ∈ L(〈xi, z〉) where xi+1 blocks z then Q ∈
L(〈[xi], [xi+1]〉).

– If Q ∈ L(〈xn, xn+1〉) then Q ∈ L(〈[xn], [xn+1]〉).

This implies that Q ∈ L(〈[xi], [xi+1]〉) for all i ∈
{2, · · · , n− 1} and Q ∈ L(〈[xn], [x1]〉).

• Property P9. From the construction of neighborhoods. �

Lemma (3). Let D be an SHI+-concept. Let T and R
be a terminology and role hierarchy. If D has a model w.r.t.
(T ,R) then there exists a completion tree with cyclic paths.

Proof of Lemma 3.
According to Lemma 5 there is a tableau T = (S,L, E) for
D. A tree T = (V,E, L) can be inductively built from T
together with a function π from V to S. This construction
is quite intuitive since we can define a valid neighborhood
from each individual s ∈ S as follows:

• We define l(v) := L(s). v is valid since any node whose
label is included in the label of a node in the tableau T is
always valid.

• Let S′(s) ⊆ S such that s′ ∈ S′(s) iff L(〈s, s′〉) 6= ∅
where
L(〈s, s′〉) := {R | 〈s, s′〉 ∈ E(R) for some R ∈
R(T ,R,D)}.
Let S(s) ⊆ S′(s) such that for each C ∈ 2sub(T ,R,D)

and R ∈ 2R if there is a t ∈ S′(s) with L(t) = C and
L(〈s, t〉) = R then there is a unique node t′ ∈ S(s) with
L(t′) = L(t) and L(〈s, t〉) = L(〈s, t′〉). This implies
that S(s) is finite.

• For each t ∈ S(s) we define a node u ∈ N0 such that
l(u) = L(t) and l(〈v, u〉) = L(〈s, s′〉). From the con-
struction, (v,N0, l) is valid.



A tree T = (V,E,L) will be obtained by tiling neighbor-
hoods built from connected individuals started at s0 ∈ S
with D ∈ L(s0) and a function π from V to S. Note that if
u, v are neighbors in T then π(u), π(v) are also neighbors
in T . The blocking condition ensures that this construction
terminates.

We now build cyclic paths for the transitive closure of
roles. By the construction of T, for each x, y ∈ V such that
Q+ ∈ L(〈x, y〉), Q /∈ L(〈x, y〉) with Q ∈ R ∪ {Inv(P ) |
P ∈ R} we have 〈π(x), π(y)〉 ∈ E(Q+).

According to P8 there are t1, · · · , tn ∈ S such that
〈s, t1〉, · · · , 〈tn, t〉 ∈ E(Q) and π(x) = s, π(y) = t. From
this set of edges, we can pick t1, · · · , tk, tl, · · · , tn with
k ≤ l such that L(tk) = L(tl) and L(ti) 6= L(tj) for all
i, j ∈ {1, · · · , k} ∪ {, l, · · · , n}, i 6= j (note that k = l if
ti 6= tj for all i, j ∈ {1, · · · , n}, i 6= j).
We now build a cyclic non-duplicated Q-path from
{s, t1, · · · , tk, tl, tl+1, · · · , tn, t}. Since x is not blocked (x
has a successor y), by the construction of T with π(x) = s,
〈s, t1〉 ∈ E(Q), L(x) = L(s), there exists a neighbor w of x
such that L(w) = L(t1) and L′(〈x,w〉) = L(〈s, t1〉) where
L′(〈x,w〉) = L(〈x,w〉). We define x1 = w and π(w) = t1.

Assume that there is xi ∈ V (xi is not blocked by con-
struction) with π(xi) = ti such that L(xi) = L(ti) with
ti ∈ {t1, · · · , tk, tl, · · · , tn}. We consider the following
cases:

1. xi has a neighbor w′ such that L(w′) = L(ti+1)
and L′(〈xi, w

′〉) = L(〈ti, ti+1〉) if i ∈ {1, · · · , k −
1, l, · · · , n− 1}, or L(w′) = L(tl+1) and L′(〈xi, w

′〉) =
L(〈tl, tl+1〉) if i = k. If w′ is not blocked then define
xi+1 = w′. If w′ is blocked by z then define xi+1 = z.
Since 〈ti, ti+1〉 ∈ E(Q) hence w′ is a Q-neighbor of xi.

2. xi has no such a neighbor w′. Since L(xi) = L(ti) if i ∈
{1, · · · , k − 1, l, · · · , n − 1}, or L(xi) = L(tl) if i = k,
by Lemma 1, we can add a successor w′ of xi such that
L(w′) = L(ti+1) and L′(〈xi, w

′〉) = L(〈ti, ti+1〉). If w′
is not blocked then define xk+1 = w′. If w′ is blocked by
z then define xi+1 = z. In addition, we define π(w′) =
ti+1. Since 〈ti, ti+1〉 ∈ E(Q) hence w′ is a Q-successor
of xi.

Consequently, we obtain x1, · · · , xk, xl+1, · · · , xn+1 such
that L(xi) = L(ti) for all i ∈ {1, · · · , k, l+ 1, · · · , n+ 1};
andQ ∈ L(〈xi, xi+1) = L(〈ti, ti+1) for all i ∈ {1, · · · , k−
1, l + 1, · · · , n} or Q ∈ L(〈xk, xl+1) = L(〈tl, tl+1〉) with
tn+1 = t.

We define a node w such that w = y if y is not blocked or
w = z if y is blocked by z. Since L(y) = L(π(y)) = L(t)
hence L(xn+1) = L(tn+1) = L(t) = L(w).

Moreover, we have to find a node z such that z is a
Inv(Q)-neighbor of w (w is not blocked). Since π(y) =
t, L(w) = L(y) hence L(w) = L(t). We have the follow-
ing cases: (i) w has a neighbor z such that L(z) = L(tn)
and L′(〈w, z〉) = L(〈tt, tn〉), (ii) Otherwise, by Lemma 1,
we can add a successor z of w such that L(z) = L(tn)
and L′(〈w, z〉) = L(〈t, tn〉). Both cases imply that z is a
Inv(Q)-neighbor of w.

According to Definition 4, 〈w0, · · · , wn+1〉 form a cyclic
non-duplicated Q-path where w0 = z, w1 = w,w2 = x and

wi = xi for all i ∈ {2, · · · , n+ 1}. Thus, T is a completion
tree with cyclic paths for D. �

Lemma (4) [Termination] Algorithm 1 terminates.

Proof of Lemma 4. Let m = |sub(T ,R, D)|, n = |R|
where |S| denotes for the cardinality of a set S. From the
construction of completion trees, it holds that:

• Each valid neighborhood has at most 2m×n distinct neigh-
bors. Therefore, we have at most 2n(m+1) valid neighbor-
hoods.

• The length of paths from the root to a leaf of a completion
tree is bounded by 2n(m+1).

• Since the height of completion trees is bounded by the
length of paths from the root to a leaf, and each node has
at most 2mn neighbors, therefore the number of nodes of
a completion tree is bounded by (2mn)2

n(m+1)

.

• Since we have at most 2n(m+1) valid neighborhoods,
hence the number of completion trees is bounded by2n(m+1)

(2mn)2
n(m+1)

= 2n(m+1)×2mn×2n(m+1)

In addition, checking whether there is a cyclic path for each
occurrence of the transitive closure of a role in the label of
an edge is polynomial in the size of completion trees. These
facts imply that the algorithm 1 terminates. �

Theorem (2) [Undecidability of SHIN+] The concept A
is satisfiable iff there is a compatible tiling t of the first quad-
rant N× N for a given domino system D = (D,H,V).

Proof of Theorem 2
• ”If-direction”. Assume that there is a compatible tiling t
for D = (D,H,V). This tiling is used to define an inter-
pretation I = 〈∆I , .I〉 of the concept A w.r.t. the axioms
in Definition 8. Without loss of the generality, we assume
that t(0, 0) = A. Moreover, each a(m,n) is denoted for each
point (m,n) of the first quadrant N×N. The figure 1. illus-
trates the interpretation that we expect.

1. ∆I = {a(m,n) | m,n ∈ N}

2. (X1
1 )I = {〈a(k,l), a(k+1,l)〉 | (kmod 2 = 0)∧(lmod 2 =

0)}
3. (X2

2 )I = {〈a(k,l), a(k+1,l)〉 | (kmod 2 = 1)∧(lmod 2 =
0)}

4. (X1
2 )I = {〈a(k,l), a(k+1,l)〉 | (kmod 2 = 0)∧(lmod 2 =

1)}
5. (X2

1 )I = {〈a(k,l), a(k+1,l)〉 | (kmod 2 = 1)∧(lmod 2 =
1)}

6. (Y 1
1 )I = {〈a(k,l), a(k,l+1)〉 | (kmod 2 = 0)∧(lmod 2 =

0)}
7. (Y 2

2 )I = {〈a(k,l), a(k,l+1)〉 | (kmod 2 = 0)∧(lmod 2 =
1)}

8. (Y 1
2 )I = {〈a(k,l), a(k,l+1)〉 | (kmod 2 = 1)∧(lmod 2 =

0)}



9. (Y 2
1 )I = {〈a(k,l), a(k,l+1)〉 | (kmod 2 = 1)∧(lmod 2 =

1)}
10. (P 11

12 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧
(l mod 2 = 0)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}

11. (P 11
21 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧

(l mod 2 = 1)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}

12. (P 22
12 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧

(l mod 2 = 1)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}

13. (P 22
21 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧

(l mod 2 = 0)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}

14. (P 21
21 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧

(l mod 2 = 0)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 0)}

15. (P 21
12 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 1) ∧

(l mod 2 = 1)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 0)}

16. (P 12
21 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧

(l mod 2 = 1)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 1) ∧ (l mod 2 = 1)}

17. (P 12
12 )I = {〈a(k,l), a(k+1,l)〉 | (k mod 2 = 0) ∧

(l mod 2 = 0)}∪
{〈a(k,l), a(k,l+1)〉 | (k mod 2 = 0) ∧ (l mod 2 = 1)}

18. (εAD)I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 0) ∧
(l mod 2 = 0)}

19. (εDA)I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 1) ∧
(l mod 2 = 1)}

20. (εBC)I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 1) ∧
(l mod 2 = 0)}

21. (εBC)I = {〈a(k,l), a(k+1,l+1)〉 | (k mod 2 = 0) ∧
(l mod 2 = 1)}

22. Di
I = {a(k,l) | t(k, l) = Di} for each Di ∈ D

23. AI = {a(k,l) | (k mod 2 = 0) ∧ (l mod 2 = 0)}

24. DI = {a(k,l) | (k mod 2 = 1) ∧ (l mod 2 = 1)}

25. BI = {a(k,l) | (k mod 2 = 1) ∧ (l mod 2 = 0)}

26. CI = {a(k,l) | (k mod 2 = 0) ∧ (l mod 2 = 1)}

27. XI = X1
1
I ∪X1

2
I ∪X2

1
I ∪X2

2
I

28. Y I = Y 1
1
I ∪ Y 1

2
I ∪ Y 2

1
I ∪ Y 2

2
I

We now check that I satisfies all axioms in Definition 8.

1. Xi
r v P ij

rs, Y
j
s v P ij

rs for all i, j, r, s ∈ {1, 2}, r 6= s.
For each k, l ≥ 0, we consider the following cases:

• Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the
assertions 2, 6, we have 〈a(k,l), a(k+1,l)〉 ∈ X1

1
I , and

〈a(k,l), a(k,l+1)〉 ∈ Y 1
1
I . From the assertions 10, 11 we

have 〈a(k,l), a(k+1,l)〉 ∈ P 11
12
I and 〈a(k,l), a(k,l+1)〉 ∈

P 11
21
I .

• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

2. Xi
r v X,Y i

r v Y for all i, r ∈ {1, 2}. From assertions
27 and 28.

3. εAD v (P 11
12 )+, εAD v (P 11

21 )+.
For each k, l ≥ 0, we consider the following cases:
• Assume (k mod 2 = 0) ∧ (l mod 2 = 0).

From the assertion 18, we have 〈a(k,l), a(k+1,l+1)〉 ∈
εAD

I . From the assertions 2 and 8 it follows that
〈a(k,l), a(k+1,l)〉 ∈ X1

1
I , 〈a(k+1,l), a(k+1,l+1)〉 ∈

Y 1
2
I (note that (k + 1 mod 2 = 1)). By the as-

sertion 10 we have 〈a(k,l), a(k+1,l)〉 ∈ P 11
12
I and

〈a(k+1,l), a(k+1,l+1)〉 ∈ P 11
12
I . This implies that

〈a(k,l), a(k+1,l+1)〉 ∈ (P 11
12 )+I .

On the other hand, from the assertions 6 and 4 we
have 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I , 〈a(k,l+1), a(k+1,l+1)〉 ∈

X1
2
I (note that (l + 1 mod 2 = 1)). By the

assertion 11 we have 〈a(k,l), a(k,l+1)〉 ∈ P 11
21
I ,

〈a(k,l+1), a(k+1,l+1)〉 ∈ P 11
21
I . This implies that

〈a(k,l), a(k+1,l+1)〉 ∈ (P 11
21 )+I .

• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

4. εDA v (P 22
12 )+, εDA v (P 22

21 )+. Similarly.
5. εBC v (P 21

21 )+, εBC v (P 21
12 )+. Similarly.

6. εCB v (P 12
21 )+, εCB v (P 12

12 )+. Similarly.
7. > v ≤ 1P ij

r,s for all i, j, r, s ∈ {1, 2}, r 6= s.
For each k, l ≥ 0, we consider the following cases:
• Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the

assertions 10, 11, 14, 17 we have 〈a(k,l), a(k+1,l)〉 ∈
P 11

12
I , 〈a(k,l), a(k,l+1)〉 ∈ P 11

21
I , 〈a(k,l), a(k,l+1)〉 ∈

P 21
21
I and 〈a(k,l), a(k+1,l)〉 ∈ P 12

12
I .

• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

8. > v ≤ 1X,> v ≤ 1Y .
For each k, l ≥ 0, we consider the following cases:
• Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From

the assertions 2, 6 we have 〈a(k,l), a(k+1,l)〉 ∈ X1
1
I ,

〈a(k,l), a(k,l+1)〉 ∈ Y 1
1
I . From the assertion 28, we

have 〈a(k,l), a(k+1,l)〉 ∈ XI , 〈a(k,l), a(k,l+1)〉 ∈ Y I .



• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). Similarly.
• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

9. > v ≤ 1εAD. It is obvious from the assertion 18 for
each k, l ≥ 0.

10. > v ≤ 1εDA. It is obvious from the assertion 19 for
each k, l ≥ 0.

11. > v ≤ 1εBC . It is obvious from the assertion 20 for
each k, l ≥ 0.

12. > v ≤ 1εCB . It is obvious from the assertion 21 for
each k, l ≥ 0.

13. > v
⊔

1≤i≤l

(Di u (
l

1≤j≤l,j 6=i

¬Dj)). Since t is a tiling,

each (k, l) has a unique Di ∈ D such that t(k, l) = Di.
Thus, from the assertion 22, each a(k,l) has a uniqueDi ∈
D such that a(k,l) ∈ Di

I .

14. Di v ∀X.
⊔

(Di,Dj)∈H

Dj u ∀Y.
⊔

(Di,Dk)∈V

Dk for each

Di ∈ D.
From the assertion 22, if a(k,l) ∈ Di

I then t(k, l) = Di.
Since t is a tiling, according to Definition 7 we have
〈Di, Dj〉 ∈ H and 〈Di, Dk〉 ∈ V with t(k + 1, l) = Dj

and t(k, l + 1) = Dk. From the assertions 28 and 2-9 we
have 〈a(k,l), a(k+1,l)〉 ∈ XI and 〈a(k,l), a(k,l+1)〉 ∈ Y I .
From the assertion 22, we have a(k+1,l) ∈ Dj

I and
a(k,l+1) ∈ Dk

I .

15. A v ¬B u ¬C u ¬D u ∃X1
1 .B u ∃Y 1

1 .C u ∃εAD.D u
∀P 22

12 .⊥ u ∀P 22
21 .⊥.

For each k, l ≥ 0, we consider the following cases:

• Assume (k mod 2 = 0) ∧ (l mod 2 = 0). From the
assertions 23 we have a(k,l) ∈ AI . From the assertions
24, 25, 26, we have a(k,l) /∈ BI , a(k,l) /∈ CI , a(k,l) /∈
DI . Moreover, from the assertions 2, 6 we have
〈a(k,l), a(k+1,l)〉 ∈ X1

1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I . By

the assertions 18 and 24 we have 〈a(k,l), a(k+1,l+1)〉 ∈
εAD

I and a(k+1,l+1) ∈ DI .
Additionally, according to the assertions 12, 13,
〈a(k,l), a(k+1,l)〉, 〈a(k,l), a(k,l+1)〉 /∈ P 11

12
I and

〈a(k,l), a(k+1,l)〉, 〈a(k,l), a(k,l+1)〉 /∈ P 11
21
I .

• Assume (k mod 2 = 1) ∧ (l mod 2 = 0). From the
assertion 23, it follows a(k,l) /∈ AI .
• Assume (k mod 2 = 0) ∧ (l mod 2 = 1). Similarly.
• Assume (k mod 2 = 1) ∧ (l mod 2 = 1). Similarly.

16. B v ¬A u ¬C u ¬D u ∃X2
2 .A u ∃Y 1

2 .D u ∃εBC .C u
∀P 12

21 .⊥ u ∀P 12
12 .⊥. Similarly.

17. C v ¬A u ¬B u ¬D u ∃X1
2 .D u ∃Y 2

2 .A u ∃εCB .B u
∀P 21

21 .⊥ u ∀P 21
12 .⊥. Similarly.

18. D v ¬A u ¬B u ¬C u ∃X2
1 .C u ∃Y 2

1 .B u ∃εDA.A u
∀P 11

12 .⊥ u ∀P 11
21 .⊥. Similarly.

• ”Only-If-direction”. On the other hand, assume that the
concept A is satisfiable w.r.t. the axioms in Definition 8 ,
and let I = 〈∆I , .I〉 be an interpretation such that AI 6= ∅.
Assume that a(0,0) ∈ AI . This interpretation can be used to
find a compatible tiling for D.

First, we show the following claim:

Claim 1 There are individuals a(k,l) ∈ ∆I with k, l ≥ 0
such that

• If (k mod 2 = 0) ∧ (l mod 2 = 0) then a(k,l) ∈
AI . Additionally, there are a(k+1,l) ∈ BI , a(k,l+1) ∈
CI , a(k+1,l+1) ∈ DI such that 〈a(k,l), a(k+1,l)〉 ∈ X1

1
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 1
2
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

1
I

and 〈a(k,l+1), a(k+1,l+1)〉 ∈ X1
2
I .

• If (k mod 2 = 1) ∧ (l mod 2 = 1) then a(k,l) ∈
DI . Additionally, there are a(k+1,l) ∈ CI , a(k,l+1) ∈
BI , a(k+1,l+1) ∈ AI such that 〈a(k,l), a(k+1,l)〉 ∈ X2

1
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 2
2
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 2

1
I

and 〈a(k,l+1), a(k+1,l+1)〉 ∈ X2
2
I .

• If (k mod 2 = 1) ∧ (l mod 2 = 0) then a(k,l) ∈
BI . Additionally, there are a(k+1,l) ∈ AI , a(k,l+1) ∈
DI , a(k+1,l+1) ∈ CI such that 〈a(k,l), a(k+1,l)〉 ∈ X2

2
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 1
1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 1

2
I

and 〈a(k,l+1), a(k+1,l+1)〉 ∈ X2
1
I .

• If (k mod 2 = 0) ∧ (l mod 2 = 1) then a(k,l) ∈
CI . Additionally, there are a(k+1,l) ∈ DI , a(k,l+1) ∈
AI , a(k+1,l+1) ∈ BI such that 〈a(k,l), a(k+1,l)〉 ∈ X1

2
I ,

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 2
1
I , 〈a(k,l), a(k,l+1)〉 ∈ Y 2

2
I

and 〈a(k,l+1), a(k+1,l+1)〉 ∈ X1
1
I .

Proof:[Proof of the claim 1]

• Assume k = 0, l = 0. We have a(0,0) ∈ AI . By the ax-
iom 10 in Definition 8 there are a(1,0) ∈ BI , a(0,1) ∈ CI

such that 〈a(0,0), a(1,0)〉 ∈ X1
1
I , 〈a(0,0), a(0,1)〉 ∈ Y 1

1
I .

Moreover, by the axioms 11, 12 in Definition 8 there
are a(1,1), a

′
(1,1) ∈ DI such that 〈a(1,0), a(1,1)〉 ∈ Y 1

2
I ,

〈a(0,1), a
′
(1,1)〉 ∈ X

1
2
I . We show that a′(1,1) = a(1,1).

By the axiom 10 in Definition 8, let a ∈ DI such
that 〈a(0,0), a〉 ∈ εIAD. From the axiom 1 in Defini-
tion 8 we have 〈a(0,0), a(1,0)〉, 〈a(1,0), a(1,1)〉 ∈ P 11

12
I .

If a(1,1) 6= a then, by the axioms 3, 5 in Definition
8 there is an instance a′ such that 〈a(1,1), a

′〉 ∈ P 11
12
I ,

which contradicts the axiom 13 in Definition 8 since
a(1,1) ∈ DI and 〈a(1,1), a

′〉 ∈ P 11
12
I . Thus, a(1,1) = a.

Analogously, from the axiom 1 in Definition 8 we have
〈a(0,0), a(0,1)〉, 〈a(0,1), a

′
(1,1)〉 ∈ P 11

21
I . If a′(1,1) 6= a

then, by the axioms 3, 5 in Definition 8 there is an in-
stance a′′ such that 〈a′(1,1), a

′′〉 ∈ P 11
21
I , which contra-

dicts the axiom 13 in Definition 8 since a′(1,1) ∈ D
I and



〈a′(1,1), a
′′〉 ∈ P 11

21
I . Therefore, a′(1,1) = a, and thus

a(1,1) = a′(1,1).

• Assume that k ≥ 0 or l ≥ 0. We consider the following
cases:
– Assume a(k,l) ∈ AI with (k mod 2 = 0) ∧

(l mod 2 = 0). By the axiom 10 in Definition
8 there are a(k+1,l) ∈ BI , a(k,l+1) ∈ CI such
that 〈a(k,l), a(k+1,l)〉 ∈ X1

1
I , 〈a(k,l), a(k,l+1)〉 ∈

Y 1
1
I . Moreover, by the axioms 11, 12 in Definition

8 there are a(k+1,l+1), a
′
(k+1,l+1) ∈ DI such that

〈a(k+1,l), a(k+1,l+1)〉 ∈ Y 1
2
I , 〈a(k,l+1), a

′
(k+1,l+1)〉 ∈

X1
2
I . We show that a′(k+1,l+1) = a(k+1,l+1).

By the axiom 10 in Definition 8, let a ∈ DI such that
〈a(k,l), a〉 ∈ εIAD. From the axiom 1 in Definition
8 we have 〈a(k,l), a(k+1,l)〉, 〈a(k+1,l), a(k+1,l+1)〉 ∈
P 11

12
I . If a(k+1,l+1) 6= a then, by the axioms 3,

5 in Definition 8 there is an instance a′ such that
〈a(k+1,l+1), a

′〉 ∈ P 11
12
I , which contradicts the ax-

iom 13 in Definition 8 since a(k+1,l+1) ∈ DI and
〈a(k+1,l+1), a

′〉 ∈ P 11
12
I . Thus, a(k+1,l+1) = a. Anal-

ogously, from the axiom 1 in Definition 8 we have
〈a(k,l), a(k,l+1)〉, 〈a(k,l+1), a

′
(k+1,l+1)〉 ∈ P 11

21
I . If

a′(k+1,l+1) 6= a then, by the axioms 3, 5 in Definition
8 there is an instance a′′ such that 〈a′(k+1,l+1), a

′′〉 ∈
P 11

21
I , which contradicts the axiom 13 in Definition 8

since a′(k+1,l+1) ∈ DI and 〈a′(k+1,l+1), a
′′〉 ∈ P 11

21
I .

Therefore, a′(k+1,l+1) = a, and thus a(k+1,l+1) =
a′(k+1,l+1).
Obviously, if (k mod 2 = 0) and (l mod 2 = 0) then
((k + 1) mod 2 = 1) and ((l + 1) mod 2 = 1)

– Assume a(k,l) ∈ DI with (k mod 2 = 1)∧ (l mod 2 =
1). Similarly.

– Assume a(k,l) ∈ BI with (k mod 2 = 1)∧ (l mod 2 =
0). Similarly.

– Assume a(k,l) ∈ CI with (k mod 2 = 0)∧ (l mod 2 =
1). Similarly. �

�
We now define a mapping t : N × N → D as follows.

By the axiom 8 in Definition 8, there is Di ∈ D such that
a(0,0) ∈ Di

I .

1. t(0, 0) := Di with a(0,0) ∈ Di
I . From the axioms 9, 2, 6

in Definition 8 and Claim 1, there are D(0,0)
x , D

(0,0)
y ∈

D such that (Di, Dx) ∈ H, (Di, D
(0,0)
y ) ∈ V ,

and 〈a(0,0), a(1,0)〉 ∈ XI with a(1,0) ∈ D
(0,0)
x

I
,

〈a(0,0), a(0,1)〉 ∈ Y I with a(0,1) ∈ D
(0,0)
y

I
. Therefore,

we define t(1, 0) := D
(0,0)
x , t(0, 1) := D

(0,0)
y . Since

X,Y are functional and Dh are disjoint for all Dh ∈ D
hence such D(0,0)

x , D
(0,0)
y are uniquely determined from

Di.

Moreover, from the axiom 9, 2, 6 in Definition 8, there
are D(1,0)

y , D
(0,1)
x ∈ D such that (D(0,0)

x , D
(1,0)
y ) ∈ H,

(D(0,0)
y , D

(0,1)
x ) ∈ V , and 〈a(1,0), a(1,1)〉 ∈ Y I with

a(1,1) ∈ D
(1,0)
y

I
, 〈a(0,1), a

′
(1,1)〉 ∈ XI with a′(1,1) ∈

D
(0,1)
x

I
. By the axioms 11, 12, 2, 6 in Definition 8

we have 〈a(1,0), a(1,1)〉 ∈ Y 1
2
I , 〈a(0,1), a

′
(1,1)〉 ∈ X1

2
I .

From Claim 1 we have a(1,1) = a′(1,1). This implies

that D(1,0)
y = D

(0,1)
x since D(1,0)

y , D
(0,1)
x are disjoint by

the axiom 8 in Definition 8. Therefore we can define
t(1, 1) := D

(1,0)
y = D

(0,1)
x .

2. Assume that t(i, j) := Di′ with a(i, j) ∈ Di′
I . From

the axiom 9, 2, 6 in Definition 8 and Claim 1, there
are D

(i,j)
x , D

(i,j)
y ∈ D such that (D(i,j)

x , D
(i,j)
y ) ∈

H, (D(i,j)
x , D

(i,j)
y ) ∈ V , and 〈a(i,j), a(i+1,j)〉 ∈ XI

with a(i+1,j) ∈ D
(i,j)
x

I
, 〈a(i,j), a(i,j+1)〉 ∈ Y I

with a(i,j+1) ∈ D
(i,j)
y

I
. Therefore, t(i + 1, j) :=

D
(i,j)
x , t(i, j+1) := D

(i,j)
y . SinceX,Y are functional and

Dh are disjoint for all Dh ∈ D hence such D(i,j)
x , D

(i,j)
y

are uniquely determined from Di′ .
Moreover, from the axiom 9, 2, 6 in Definition 8, there
are D(i+1,j)

y , D
(i,j+1)
x ∈ D such that (D(i,j)

x , D
(i+1,j)
y ) ∈

H, (D(i,j)
y , D

(i,j+1)
x ) ∈ V , and 〈a(i+1,j), a(i+1,j+1)〉 ∈

Y I with a(i+1,j+1) ∈ D
(i+1,j)
y

I
, 〈a(i,j+1), a

′
(i+1,j+1)〉 ∈

XI with a′(i+1,j+1) ∈ D
(i,j+1)
x

I
. We now distinguish the

following cases:
(a) Assume that a(i,j) ∈ AI . From Claim 1 and the axiom

8 in Definition 8 we can show D
(i+1,j)
y = D

(i,j+1)
x .

Therefore we can define t(i+ 1, j + 1) := D
(i+1,j)
y =

D
(i,j+1)
x .

(b) Assume that a(i,j) ∈ BI . Similarly.
(c) Assume that a(i,j) ∈ CI . Similarly.
(d) Assume that a(i,j) ∈ DI . Similarly.

It remains to be shown that (1) t is well defined, (2) the
horizontal and vertical matching conditions are satisfied.

(1) is obvious from the construction of the mapping t.
(2) From the definition of t, for each a(k,l) there is a Di ∈ D

such that t(k, l) = Di and a(k,l) ∈ Di
I . Again, by

the construction of t, there are Dj , Dk ∈ D such that
t(k + 1, l) = Dj , t(k, l + 1) = Dj and a(k+1,l) ∈ Dj

I ,
a(k,l+1) ∈ Dk

I . By the axioms 2 and 9, we have
〈Di, Dj〉 ∈ H and 〈Di, Dk〉 ∈ V .


